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• “Big data is not about the data!”
            Gary King, Political Scientist, University Professor, Harvard University.

• “Data Science is only as much of a science as it facilitates       
the interpretation of data - a two body problem, connecting    
data to reality”.

            Judea Pearl, Professor of Computer Science & Statistics, UCLA.
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Eli’s thesis: Mismatch between the  
type of data collected & desired claim.

" 
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• Develop machinery (language, conditions,  
and algorithms) for performing two tasks:  

1. Learning about population-level 
interventions by cohesively combining 
multiple heterogenous datasets                 
(NeurIPS’14, PNAS’16, AAAI’17,, UAI’18).

2. Deciding individual-level treatments by 
leveraging population-level knowledge    
(NeurIPS’15, ICML’17, NeurIPS’18, AAAI’19).
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Challenge: “All data is not created equal”

• Key observation. There’s a lot of data out there, but 
this data is almost invariably collected… 

     - under different experimental conditions,
     - the underlying populations are different, 
     - the sampling procedure is not random, 
     - the treatment assignment is not random,
     - many variables are not measured. 
• In words, the collected data is messy, and rarely 

perfectly matches the inferential target.
• Positive: All these dimensions are now formalized.
• And there are conditions and algorithms to decide
    what is “entailed” from a certain data collection. !7
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Description of each data collection: tuple (d1, d2, d3, d4) 
  (population, obs./exp., sampling, measure.)

   1. Causal Inference from Obs Studies 
       (d1, Obs, d3, d4) → (d1, do(X), d3, d4)

   2. Experimental Inference (generalized IVs)   
      (d1, do(Z), d3, d4) → (d1, do(X), d3, d4) 

   3. Sampling Selection Bias 
      (d1, d2, Select(Age), d4) → (d1, d2, {}, d4)

   4. Transportability (External Validity)   
      (Bonobos, d2, d3, d4) → (Humans, d2, d3, d4)

P. & S. Wright, 1928

Heckman, 1976

Shadish, Cook, Campbell, 1976

Rubin, Robins, Dawid, Pearl
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and under very special parametric conditions. 
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4) 
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  Is it possible to compute the effect of X on Y in a target  
  environment ∏* (where no experiments are feasible), using  

   experimental findings from a different environment ∏?  

Answer: Sometimes yes.  

Our goal is to formally characterize when and how.  

(or, external validity, robustness, generalizability) 
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since the data does not impose enough 
constraints over the causal structure, in 
which the result is sensitive. 

Lesson. Causal assumptions are required 
since the data does not impose enough 
constraints over the causal structure, and 
the results are structure-sensitive. 
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Lesson: causal assumptions are needed 
since the data does not impose enough 
constraints over the causal structure, in 
which the result is sensitive. 

Lesson.  No claim about the target 
effect can be made in the target (a la 
CLT) regardless of how much data of 
the observed distributions are collected.
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In reality… 

Result:  
 - automated 
transportability 
analysis in large-
scale settings.
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IS THE GOLD STANDARD GOLDEN?  
(GENERALIZABILITY FROM CLINICAL TRIALS)

Before randomization

X Y 

Z 

Lesson. Even if we have a perfect RCT, one still needs to go 
through a Transportability exercise. TR theory is unavoidable. 

X  
(Intervention)

Y 
 (Outcome)

Z 

After randomization
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causal analysis when the model is too weak or just an equivalence 
class of causal models is available?

• Causal Fairness Analysis (NeurIPS’18, AAAI’18)  — How to determine 
(and then quantify, correct for) whether a certain decision-making 
process is unfair when the causal mechanisms are unknown?
• Model learning from heterogenous sources (NeurIPS’17, ICML’18) — 
How to construct a causal model from a combination of 
heterogenous observational and experimental data? 

• Counterfactual decision-making (NeurIPS’15, ICML’17, AAAI’19) —  
How to make individual-level decisions from population-level data?
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• Causal data science: principled way of combining substantive 
knowledge about the phenomenon under investigation with data to 
generate causal explanations and better decision-making.

• “Not all data is created equal” - Most modern data collections are 
messy and plagued with systematic biases that need to be 
understood and controlled so that causal claims can be made. 
Causal data science solves long-standing challenges in the 
empirical sciences, including confounding bias, selection bias, 
generalizability of experimental studies, and data-fusion.
• Future ⇾ Automated scientist

• Reasoning with cause and effect relationships is part of the core of  
the ‘scientific method’ and has been understood in great generality;
• Strategy: combine causal inference theory with AI-ML techniques 
to automate the process and close the scientific discovery loop.
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“Development of Western Science is based on two great 
achievements, the invention of the formal logical system (in 
Euclidean geometry) by the Greek philosophers, and the 
discovery of the possibility to find out causal relationships 
by systematic experiment (during the Renaissance)”.   
Albert Einstein.
 
“Imagine how much harder physics would be if electrons 
had feelings!”. Richard Feynman.

THANK YOU!
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• (Possibly) surprising observations:

Judges Data ML  
algorithm

2. The trained ML algorithm tries to “mimic” the patterns in the data.  
1. The data reflects the judges decisions, which includes their biases.

Lesson: causal assumptions are needed 
since the data does not impose enough 
constraints over the causal structure, in 

Question. If the data cannot be used 
as baseline (or oracle), what can we, 
machine learners, really do?
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• The plaintiff must demonstrate “a strong causal 
connection” between the alleged discriminatory practice 
and the observed statistical disparity, otherwise the case 
will be dismissed (Texas Dept. of Housing and 
Community Affairs v. Inclusive Communities Project, 
Inc., 576 U.S. __ (2015)). 

• Question. How can we disentangle “the reasons” for the 
judges to be acting in the way they did from the observed 
reality and data? How to measure the underlying causal 
mechanisms that are unobserved?
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and Z and W are covariates encoding, respectively, the 
educational level and proximity to work of the applicant. 
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