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- “The ability to take data — to be able to understand it, to
extract value from it, to visualize it, to communicate it -
that’s going to be hugely important in the next decades’

Hal Varian, chief economist at Google and UC Berkeley
Professor of Information Sciences, Business, and Economics.

J

- “Big data is not about the data!”
Gary King, Political Scientist, University Professor, Harvard University.

- “Data Science is only as much of a science as it facilitates
the interpretation of data - a two body problem, connecting
data to reality”.

Judea Pearl, Professor of Computer Science & Statistics, UCLA.



CURRENT STATE OF AFFAIRS
(REPORT FROM THE TRENCHES)




€0 B‘*C‘”Sk

POVER!

|Report Money gports »

102

b Tweet \‘m Share

@ More gharing

¢h2.3K

g Reco™ mend

gvoicer!
Are you aware ofa

fo\\ow'\r\g’?
Humana

Un'\tedHea\\hcare
Blue Cross

ny of the

petna

Gupta

ple under 55
pr. Sanjay

King in peo



€0 B‘*C‘”Sk

POVER!

102

% 2.3k
nd v Tweet ﬁ Share

g Reco™ me
@ More gharing

gvoicer!
Are you aware ofa

fo\\ow'\r\g’?
Humana

Un'\tedHea\\hcare
Blue Cross

ny of the

petna

Gupta

ple under 55
/ Dr. Sanjay

y coffee drinking in peo

/
f gtudy: HeaV
death

linked t0 early

August 45th, 2013




ucLa Blomedlcal le/Serlal

In the Clinic
17 June 2008, Vo) 148, No. 12,

Journg| Clup CME A

< Previous in thjg Issye

Next in this Issye s

ion

Ann Intern Meg. 2008;1 48( 12):904-91 4. doi: 10, 732







paNEN A
Sclence News WW research organizations

One Drmk Of Red Wine Or Alcohol Is Relaxing To Clrculatlon But Two™
D rmks Are Stressful .

Feb. 13, 2008 = Onedrimroieithemiedwingor——Related Fopics

alcohol sllghtly benefits the heart and blood vessels

but the positive effects on specific biological markers Health & Medicine Articles
disappear with two drinks, say researchers at the » Heart Disease » Mediterranean diet
Peter Munk Cardiac Centre of the Toronto General  » Hypertension » Drunkenness

AicAanca

Hospital. Mind & Brain » Coronary heart

' Mortaljty,

io
‘0 MD, Pho; and Frany



—D 1\14‘)\ kN

Science News ... from universities, journals, and other research organizations

One Drink Of Red Wine Or Alcohol Is Relaxing To Circulation, But Two
Drinks Are Stressful

Feb' 13 2008 — Mna Arinle Af aithar rad wina ar Dalatad TAanine
" INSIDE THE EMOTIONAL LIVES TIME f W 38t NAwps
alcohol slightly & as Magazine a

bUt the pOSitiV‘ Home NewsFeed U.S. Politics World Business Tech Health Science Entertainment Video TIME 100 Photos
disappear With cuenise aemwe cowrs 10 uestions  susserine in diet
Peter Munk Cz ‘»
Hospital. e art

Let's Build a Smarter Planet. @

Is your business (]
[
———— ready to launch
ﬂlec 777 W Tweet 44 :‘4 99 Sharo 1 a new buSin.eSS?

Correction Appended: Aug. 31, 2010

Smarter enterprises use cloud
One of the most contentious issues in the vast 4 - to reinvent themselves —
literature about alcohol consumption has been the Y
consistent finding that those who don't drink tend to

die sooner than those who do. The standard Subscribe
Alcoholics Anonymous explanation for this finding is

that many of those who show up as abstainers in . N J as N S —— B Obama's Race for the
such research are actually former hard-core drunks E : \ L 2 Cure

who had already incurred health problems associated g j"v‘ . o B What Boys Want

with drinking. Foorohar: Yellen for America

a8 Why China Needs More Children
- © e Jar_1, e .
V ~~al 10 lane * L
+ e illegal 10 O
18 Texas it is e Twee\s

ghares

August




P \ ‘
Science News

One Drink Of Red Wine Or
Drinks Are Stressful

Feb. 13’ 2008 — nnnr Arinle ~f aitk . Hoye

literature about 2

from universities, journals, and other research organizations

“~=~ To Circulation, But Two

. 0 R EMOTIONAL LIVES AR/
alcohol slightly & ORy Esg L 0 AN
o g , Ry Timgy, M E
bUt the pOSItIVE Home NewsFeed U.S. SSOC e A4 /SsU DI-C
. . . I3
d|Sappear Wlth Current Issue  Archive Covers MOIT&] atlon Of PEC INE
iq
Peter Munk Cz J98a, iy Ny Co T8 1o,
. ’ Cs
Hospital. gy, O Sep Asup,
P = EHQ/JMed ?/a/'e’ , ‘:f.// Han, Php ptIOII 1 tb ORAUTHORS
4 13 3 " WVillegs RS g
/ 9 *Mp rank I 0
Why Do Hea . 201,20, Orpy, 8 la]
b 077 H, “m a
S\ One of the most conter Stracy Novemb d ¢, a h.p nd q
s Articyg b 7;98 Sk uc; Warg use“S
Do,. , . Gii
BACK eferences 10 705/;0.' MP./;OVannUCC/Z y
In, GROU ey a7 Se.p
Cregs, Np 1307 Mei
Ofmafo o9y Co, e Stampy
. r n 5)
Ci abes, schfon/c d/:e Plion s s
n, m, Q, . ‘as ara.
| One of the most cc sl.//np tio, e///tUS, Sesl /nC/U re; '7 ~
Ny mo”OWeVe/_ " O'/ng ca K
» e

aq,

. . le

consistent findir Iy . raj, q Wi
uj) Q] o 1t
die sooner thar " Text of Y o SS0iag, Uy, @ real,
Alcoholics An Q Ck, Ns un, on b, dlsea Ced 1y 4
9roy, Cleg Ctwg Se Sk AR AN .
that many of ME nq r. € Nyt and [y . CLg g
such resear.. W THOD S P deg
who had already incu.€ @ X3
with drinking. rn/fled th
€a
SSon;
N C o R - 2CIQY,
W— \legal 1€ teke atlon e
- Toy _;-,‘u.\»\ _\— p\tw
\n 1exas Sha[es W een ny




WHAT'S GOING ON HERE?



WHAT'S GOING ON HERE?



s
WHAT'S GOING ON HERE? L

L

S

Eli's thesis: Mismatch between the
type of data collected & desired claim.
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TASKS

* Develop machinery (language, conditions,
and algorithms) for performing two tasks:

1. Learning about population-level
interventions by cohesively combining
multiple heterogenous datasets
(NeurlPS’14, PNAS'16, AAAI'17,UAI'18).

2. Deciding individual-level treatments by
leveraging population-level knowledge
(NeurlPS’15, ICML’17, NeurlPS’18, AAAI'19).
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DATA, DATA, DATA...
Challenge: “All data is not created equal”

« Key observation. There's a lot of data out there, but
this data is almost invariably collected...

- under different experimental conditions,
- the underlying populations are different,
- the sampling procedure is not random,

- the treatment assignment is not random,
- many variables are not measured.

* |n words, the collected data is messy, and rarely
perfectly matches the inferential target.

 Positive: All these dimensions are now formalized.
* And there are conditions and algorithms to decide
what is “entailed” from a certain data collection.
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TRANSPORT FORMULA SENSITIVITY
TO THE CAUSAL ASSUMPTIONS

T LA Py | do(x).2)

a) Z represents age 21 X1Y

TN / | 17 N\ X\ N/ | 1 _ 7\ N T / N\

Lesson. Causal assumptions are required
since the data does not impose enough NYC: P*(x,y,2)
constraints over the causal structure, and z| x|y

the results are structure-sensitive.

£o(yldolx)) = %IJUICIO(X),Z)IJ'“(ZIX)
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MEANING OF TRANSPORTABILITY

P*(y|do(x)) Is P*(y|do(x)) Is

A transportable in G In G
@ Models
e INALICINAL e

Lesson. No claim about the target
effect can be made in the target (a /a
CLT) regardless of how much data of
the observed distributions are collected.

Models
with G

All models
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S = Factors representing differences

OUTPUT:
1. Transportable or not?
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INPUT: Annotated Causal Graph

S = Factors representing differences

OUTPUT:
1. Transportable or not?
2. Yes = Transport formula
1. Measurements to be taken in
the experimental domain
2. Measurements to be taken in
the target domain
3. No = Not possible

P*(y | do(x)) = ; P(y|do(x),2) 3 P*(z|w) ; P(w|do(x), 1) P*(?)
w
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IS THE GOLD STANDARD GOLDEN?
(GENERALIZABILITY FROM CLINICAL TRIALS)

Before randomization

~ .
-------
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Before randomization After randomization
Z I T
l'—-.A A'-.~~$ Z *A—-.~~$
‘/\» : \.»
X 47 X Y
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IS THE GOLD STANDARD GOLDEN?
(GENERALIZABILITY FROM CLINICAL TRIALS)

Before randomization After randomization
Z I T
l'—-.A A_-.~~\ Z *A—-.~~S
< < P \’

. . (Intervention) (Outcome)

~ .
.......

Lesson. Even if we have a perfect RCT, one still needs to go
through a Transportability exercise. TR theory is unavoidable.
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CausalAl Lab - Big Picture Postdoc

Available

Structural Causal Models

1. Explainability

(Effect identification
and decomposition
Bias Analysis and

2. Decision-Making

(Reinforcement Learning,
Randomized Clinical Trials,

Fairness, Robustness Personalized Decision-Making)
and Generalizability)

3. Appllcatlons, Education, Software

Principled (“scientific”) inferences
from large data collections.

Data Science: //\ Al-ML.:

Principles and tools for designing
robust and adaptable learning systems. »;
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* Where to intervene (NeurlPS’18, AAAI'19) — Given a causal model,
how to design an intervention that brings about the desired change?

* Approximate Causal Inference (UAI'18, IJCAI'18) — How to perform
causal analysis when the model is too weak or just an equivalence
class of causal models is available?

« Causal Fairness Analysis (NeurlPS’'18, AAAI'18) — How to determine
(and then quantify, correct for) whether a certain decision-making
process is unfair when the causal mechanisms are unknown?

* Model learning from heterogenous sources (NeurlPS'17, ICML'18) —
How to construct a causal model from a combination of
heterogenous observational and experimental data?

» Counterfactual decision-making (NeurlPS’15, ICML' 17, AAAI'19) —

How to make individual-level decisions from population-level data?
28
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CONCLUSIONS

 Causal data science: principled way of combining substantive
knowledge about the phenomenon under investigation with data to
generate causal explanations and better decision-making.

* “Not all data is created equal” - Most modern data collections are
messy and plagued with systematic biases that need to be
understood and controlled so that causal claims can be made.
Causal data science solves long-standing challenges in the
empirical sciences, including confounding bias, selection bias,
generalizability of experimental studies, and data-fusion.

» Future - Automated scientist
* Reasoning with cause and effect relationships is part of the core of
the ‘scientific method’ and has been understood in great generality;

« Strategy: combine causal inference theory with Al-ML techniques
to automate the process and close the scientific discovery loop.



“Development of Western Science is based on two great
achievements, the invention of the formal logical system (in
Euclidean geometry) by the Greek philosophers, and the
discovery of the possibility to find out causal relationships
by systematic experiment (during the Renaissance)”.
Albert Einstein.

“Imagine how much harder physics would be if electrons
had feelings!”. Richard Feynman.

THANK YOU!
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» Context. Al-ML systems are starting to replace humans in
decicinn-makina infra-ctriictiire _incliidina hank lnane
mec Question. If the data cannot be used
.- as baseline (or oracle), what can we,
machine learners, really do?

making in

* Conside
ML

algorithm
— £i2

1. The data reflects the judges decisions, which includes their biases.
2. The trained ML algorithm tries to “mimic” the patterns in the data. 31

Data

* (Possibly) surprising observations:
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- Law (e.qg., Title VIl): What makes some action
“discriminatory” are the “reasons” that lead to the specific
disparity, not the disparity itself.
* The plaintiff must demonstrate “a strong causal
connection” between the alleged discriminatory practice
and the observed statistical disparity, otherwise the case
will be dismissed (Texas Dept. of Housing and

Community Affairs v. Inclusive Communities Project,
Inc., 576 U.S. __ (2015)).

* Question. How can we disentangle “the reasons” for the
judges to be acting in the way they did from the observed

reality and data? How to measure the underlying causal

mechanisms that are unobserved?
32



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

33



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

33



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

34



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

35



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

36



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

37



NeurlPS’18

CAUSAL FAIRNESS ANALYSIS %

« Example: Assume X is the protected attribute, e.g.,
religious beliefs, Y is the outcome of interest, hiring decision,
and Z and W are covariates encoding, respectively, the
educational level and proximity to work of the applicant.

Causal Model

38



