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Abstract

Markov decision processes (MDPs) constitute one of the most general frameworks
for modeling decision-making under uncertainty, being used in multiple fields, includ-
ing economics, medicine, and engineering. The goal of the agent in an MDP setting
is to learn more about the environment so as to optimize a certain criterion. This
task is pursued through the exploration of the environment by actively performing in-
terventions (i.e., through the randomization of its actions), which contrasts with the
agent passively observing the environment and not exerting any control over it (i.e.,
through random sampling). The existence of unobserved confounders, namely, unmea-
sured variables affecting both the action and the outcome or both the action and the
state variables, implies that these two data-collection modes (passive and active) will in
general not coincide. It is clear that by performing interventions, any potential inclina-
tion (intuition) of the agent will be ignored, which will imply a loss of information and
failure to achieve an optimal behavior. In this paper, we formalize this observation and
study its conceptual and algorithmic implications. We first demonstrate that standard
algorithms may act sub-optimally when unobserved confounders are present. We then
propose a systematic method to enhance these algorithms using causal inference theory
and leveraging observational data. We formally and empirically show that this new
approach produces superior results than current state-of-the-art MDP algorithms.

Introduction

Markov Decision Processes (MDPs) is one of the most general formalisms for modeling
sequential decision-making under uncertainty within the reinforcement learning paradigm
(Puterman, 1994; Sutton and Barto, 1998; Szepesvári, 2010; Bubeck and Cesa-Bianchi,
2012). In the MDP framework, the environment is modeled as a set of states and actions,
where actions encode the autonomy of the agent to perform causal interventions. Agents
learn about the environment by performing actions while trying to optimize a certain op-
timality criterion. One possible criterion is the minimization of the sample complexity of
exploration, which is the number of timesteps for the agent to converge to the optimal
policy. Here, the optimal policy is the one that maximizes the optimality criterion (e.g. cu-
mulative reward). We will show that the definition of “optimal” is somewhat more involved
when unobserved confounders are taken into account, which has conceptual and algorithmic
implications.

The rich literature of MDPs encompasses a number of representations and algorithms for
the different assumptions about the underlying data-generating model, including factored
MDP (Dietterich, 1998), relational MDPs (Van Otterlo, 2009), Semi-Markov Decision Pro-
cess (SMDP) (Puterman, 1994), Partially Observable Markov Decision Process (POMDP)



(Smallwood and Sondik, 1973; Ellis, Jiang, and Corotis, 1995; Singh, Jaakkola, and Jordan,
1994). For a survey, see (Sutton and Barto, 1998; Szepesvári, 2010).

Our work touches on another dimension of MDPs that has not been fully explored yet,
the existence of unobserved confounders (UCs, for short). To understand the pervasiveness
of the confounding problem, we first note that the goal of the randomization of the treatment
assignment, as used in the causal inference literature, is precisely to eliminate the influence
of unobserved confounders – factors that simultaneously affect the treatment (action) and
the outcome (reward), but are unknown a priori in the analysis and not measured (Fisher,
1951; Pearl, 2000). 1

The use of randomization in the actions’ selection is a central component of the ex-
ploratory nature of RL algorithms and represents a distinguishing feature of the RL frame-
work that contrasts with other modes of learning (e.g., supervised). Recently, (Bareinboim,
Forney, and Pearl, 2015) noted a subtle property of the use of randomization in the con-
text of Multi-Armed Bandits (MABs). Standard procedures based on randomization do
not always reach an optimal behavior, and the agent’s natural decision (without external
intervention) is necessary for convergence. Perhaps surprisingly, there is more to the issue
of confounding than simply randomizing when selecting actions. Bareinboim, Forney, and
Pearl (2015) then explained that the natural decision of an agent (e.g., physician) without
an external intervener (e.g., MAB algorithm) contains information about the UCs that is
washed out by standard randomization. This loss of information can potentially mislead
the agent in the evaluation of the underlying rewards’ distribution and search for an opti-
mal policy. They formalized and proposed a general solution to the problem of UCs in the
context of MABs. 2

The recent advances in the treatment of UCs in MABs do not directly translate to MDPs
for different reasons. First, the type of confounding in MDPs is qualitatively different than
in MABs since they not only affect the action and outcome, but can also affect state and
outcome variables, or their combination, which require special treatment. Also, as opposed
to MABs, the agent in an MDP setting cannot simply maximize the expected reward at
each round, but instead has to evaluate policy’s performance in the long-term. Finally, the
interventions considered in MABs and MDPs are different – the former is atomic while the
latter is conditional. These interventions entail different evaluations since conditioning may
open up different back-door paths (Pearl, 2000, Ch. 3) and require a more refined analysis.

To the best of our knowledge, no systematic treatment for handling UCs in the context of
MDPs has been developed. Further, no MDP algorithm has appropriately treated different
data-collection modes – i.e., passively interacting with the environment (without interven-
tion) versus interacting with the environment through active interventions (randomizing
the actions). 3 In this paper, we explicitly acknowledge, formalize, and then exploit these
different data-collection modes to solve MDP with UCs (MDPUC, for short). Specifically,
our contributions are as follow:

1. We show that standard MDP algorithms are not guaranteed to learn an optimal policy
in the presence of unobserved confounders in a general class of models.

2. We represent the MDP problem in causal language and compare two sets of candidate
policies: experimental and counterfactual. We prove that a strategy that explores
counterfactual policies outperforms standard procedures, which consider only experi-
mental policies.

1Confounding represents a major challenge in tasks where policy-learning is required, but performing
experiments is not feasible (Simpson, 1951; Pearl, 2000; Bareinboim and Pearl, 2016).

2UCs are automatically avoided in many tasks in the RL literature – e.g., off-policy evaluation is valid
since randomization neutralizes the effect of the UCs, which makes agents interchangeable (Szepesvári, 2010;
Li et al., 2011). Here, we are interested in new learning opportunities opened up by UCs in some general
settings.

3This dichotomy is related in behavioral modeling to the notions of “natural” and “controlled” environ-
ments (Willems, 1989).
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3. We propose a simple modification to empower standard MDP algorithms so as they can
search in the space of counterfactual policies. We run simulations and show that the
new algorithm is both efficient, stable, and outperforms state-of-the-art procedures.

Preliminaries

In the remainder of this section, we review the basic machinery used throughout the paper.

Definition 1. (MDP (Bertsekas and Tsitsiklis, 1995)). A Markov decision process (MDP)
is a tuple 〈S,X, T,R〉 in which S is a finite set of states, X a finite set of actions, T a
transition function defined as T : S ×X × S → [0, 1], and R a reward function defined as
R : S ×X → R.

Let Y (t), X(t), S(t) denote corresponding variables for the reward, action, and state at
round t ∈ N+. A policy π is a mapping that assigns weights to each action x ∈ X given
state s ∈ S. A deterministic policy π is a function defined as π : S → X. A stochastic policy
is defined as π : S ×X → [0, 1] such that

∑
x∈X π(s, x) = 1, for s ∈ S. We focus here on

infinite-horizon discounted MDPs where the goal is to maximize the discounted cumulative
reward E[

∑∞
t=0 γ

tY (t)] with discount factor γ ∈ [0, 1).
The language of structural causal models will play a central role in the analysis of

MDPs since it will allow the articulation of concepts such as confounding, observational
and experimental distributions, and counterfactuals (Pearl, 2000). We introduce key causal
concepts and notation next.

Definition 2. (SCM (Pearl, 2000, pp. 203-205)). A Structural Causal Model (SCM) is a
tuple 〈U, V, F, P (u)〉 in which U is a set of exogenous (unobserved) variables, V is a set
of endogenous (observed) variables, F is a set of structural equations such that for each
Vi ∈ V , fi ∈ F : Vi ← fi(PAi, Ui), where Ui ⊆ U , PAi ⊆ V \Vi, and P (u) is a probability
distribution over U .

Each SCM M has an associated causal diagram G, where the nodes represent the en-
dogenous variables V and the edges represent the functional relationships (the arguments
of the structural equations in F ). Within the structural semantics, performing an action
X = x is represented through the do-operator, do(X = x), which encodes the operation of
replacing the original equation of X by the constant x and induces a submodel Mx (with
equations Fx = {X ← x} ∪ F \ {fx}). The effect of do(X = x) on a variable Y is described
probabilistically as P (YX=x = y). Similarly, performing an action X = π(z) is represented
as do(X = π(z)), where π is a policy function that takes z as an argument. Let P (Yx=π)
denote the effect of do(X = π(z)) on a variable Y when π decides for x and the argument
z is dropped for simplicity. 4 We are finally ready to define counterfactuals.

Definition 3. (Counterfactuals (Pearl, 2000, pp. 204)). Given a SCM M and X and Y
two subsets of endogenous variables in V , the counterfactual sentence “The value that Y
would have obtained, had X been x (in situation U = u)” is interpreted as denoting the
potential response Yx(u) – the solution for Y of the set of equations Fx in submodel Mx,
where Fx = {X ← x} ∪ F \ {fx}.

We use capital letters to represent variables and small letters to their values, P (yx|z)
to represent P (YX=x = y|Z = z), and X([i,j]) to represent the sequence starting at X(i)

and going until X(j) (i.e., (X(i), X(i+1), . . . , X(j))). We use the vertical line to represent
evaluation, e.g., P (Yx = y|z)

∣∣
x=π

represents
∑
x∈X P (Yx = y|z)I{x = π(z)}, where I{·} is

the indicator function.

4For a detailed discussion on the properties of structural models, we refer readers to (Pearl, 2000, Ch.
7).
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X → S unconfounded

X → Y unconfounded

X → Y confounded

X → S confounded

Figure 1: (a) MDPUC instance with x(t) → y(t) confounded. (b) Graphical representation
for an unconfounded MDP instance. (c) MDPUC instance with both x(t) → s(t+1) and
x(t) → y(t) confouned. (d) MDPUC instance with x(t) → s(t+1) confounded.

Practical Challenges Due to Unobservable Confounders

We discuss in this section practical challenges presented to MDPs due to the existence of
unobserved confounders.
Medical treatment. A physician treats patients with a serious disease who have to visit
the hospital regularly. At the t-th visit, the physician measures the patient’s corticosteroid
level S(t) ∈ {0, 1}, where 0 stands for a low and 1 for a high level of corticosteroid. She then
decides whether to give or not the drug to the patient, respectively, X(t) = {1, 0}, and then
measures an overall health score Y (t) ∈ {1, 0} (i.e., “healthy” and “not healthy”). The goal
is to maximize the cumulative health score of the patient in the long run. Let the discount
factor be γ = 0.99. This problem can be modelled as an MDP where the optimality criterion
is to maximize the cumulative discounted reward.

In reality, the patient’s health score Y (t) is affected not only by X(t) and S(t), but also
by confounders such as the patient’s mood M (t) ∈ {0, 1} (0 for positive, 1 for negative) and
socioeconomic status (SES) E(t) ∈ {0, 1} (0 for wealthy, 1 for poor). The physician decides
whether to give the drug by a criterion, which is computed (consciously or subconsciously)
by a structural equation, for example, X(t) ← πndt(S(t),M (t), E(t)). 5 Despite affecting the
physician’s decision, the values of M (t), E(t) are not recorded in the hospital’s database. 6

In other words, the agent’s “natural” decision (i.e., without any external intervention) X(t)

is reached taking as input variables S(t),M (t), E(t), but only the decision (X(t)) and the
state (S(t)) are recorded. The graphical representation of this process is depicted in Fig.
1(a). We can see that the causal relation between X(t) and Y (t) (i.e., arrow from X(t) to
Y (t)) is confounded (Pearl, 2000, Ch. 6) by the UCs M (t) and E(t).

As an AI researcher, we decide to run a battery of experiments using well-known MDP
algorithms (e.g., Delayed-Q-Learning, SARSA, MORMAX), which graphically amounts to
replacing the function π that selects the action at a given step. We include two baseline
policies for comparison: 1. a policy that follows the physician’s decision-making process
described above, which we call ndt (for “natural decision theory”), and 2. a policy where
treatment is picked at random, which we call random. Fig. 2 shows the cumulative reward
and average reward per episode of these experiments. Somewhat surprisingly, we realize
that none of the algorithms is able to learn a reasonable policy – the results coincide with

5The full parametrization of this structural model with the reward function P (Y (t) = 1 |
S(t),M(t), E(t), X(t)) and transition function P (S(t+1) = 0 | S(t), X(t)) is provided in Appendix 1.

6It is usual the case that an intricate combination of factors lead to a decision in settings involving
humans. In practice, however, these factors are not always fully known or easily articulable by the decision
maker herself, which engender the MDPUC problem.
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Figure 2: Average reward per episode plot and cumulative reward plot (right) for patient
treatment example.

the random policy. Moreover, the ndt policy performs worst than all other policies, i.e., the
physician is incapable of outperforming random guess. 7

The experimental results suggest that algorithms that employ standard randomization
are unable to converge to some acceptable policy, which raises the question of whether it is
feasible in these scenarios to achieve a better performance than random guessing. It is worth
highlighting at this point the relationship between MDPUCs and other MDP settings:

1. Compared to MDPs. If all variables affecting the agent’s decisions and rewards
(confounders) are recorded (in our example, M (t) and E(t)), it would be possible to
control for all the biases and the problem would reduce to standard MDP learning. In
practice, however, admitting the existence of UCs is the most relaxed scenario since,
alternatively, the modeler would need to know a priori all factors that make up the
agent’s decision, which is a strong requirement in many settings.

2. Compared to POMDPs. POMDPs are MDPs with partial or no information of
the state variables, where the partial observation does not summarize all the trajec-
tories that led to the present state (i.e., non-Markovian). MDPUCs are MDPs with
local unobserved variables that confound the relationships between actions X(t), ef-
fects Y (t), and states S(t+1). There are two key differences between POMDPs and
MDPUCs. First, POMDPs do not necessarily imply the confounding – i.e., it is pos-
sible that no knowledge about the state variable is available, but there exists still
no unobserved confounding in the system. Second, the Markovian property holds in
MDPUCs (Lemma 1), while it is clearly violated in POMDPs. In fact, POMDPs and
MDPUCs are complementary and cover orthogonal dimensions of the modeling space.

We will discuss throughout the paper different scenarios involving UCs. For instance,
in the context of a social intervention (e.g., job training program) that we describe in the
appendix (Heckman, 1992), there exist no UCs between X(t) and Y (t), but between X(t)

and state S(t) (Fig. 1(d)). In fact, we will focus on the general scenario shown in Fig.
1(c), where there are UCs among the three types of variables (X(t), Y (t), S(t)). Standard
algorithms are guaranteed to perform optimally and cannot be improved in settings where
UCs do not exist, which are summarized by the model in Fig. 1(b).

MDPUC as a Causal Inference Problem

In this section, we study two classes of policies – the first is called Fexp and encompasses
policies that decide actions based on the state information and the experimental distribution;

7Examples of this kind are the very reason the FDA requires the execution of rigorous clinical trials
where the treatment allocation is randomized so as causal effects can be computed without medical biases
(due to UCs). In this example, however, both the FDA (random policy) and more sophisticated, adaptive
MDP strategies perform no better than chance.
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the second is called Fctf and encompasses polices that decide actions based on both the state
information and the counterfactual distribution. We compare the performance of polices
from both classes and show that whenever UCs are present, agents should search for an
optimal policy within Fctf instead of Fexp.

In order to properly account for UCs and compare the performance of polices in Fexp and
Fctf , we will represent MDPUCs using causal formalism and re-express some important RL
notions (e.g., value functions and state-action values) in its language. We start by defining
MDPUCs and necessary toolkits for analyzing Fexp.

Definition 4. A Markov Decision Process with Unobserved Confounders (MDPUCs) is
an augmented SCM M (Def. 2) with finite action domain X, state domain S, and binary
reward Y :

1. γ ∈ [0, 1) is the discount factor.

2. U (t) ∈ U is the exogenous variable (i.e., unobserved confounder) at round t.

3. V (t) = X(t)∪Y (t)∪S(t) is the set of endogenous (observed) variables at round t, where
X(t) ∈ X, Y (t) ∈ Y , and S(t) ∈ S.

4. F = {fx, fy, fs} is the set of structural equations relative to V such that X(t) ←
fx(s(t), u(t)), Y (t) ← fy(x(t), s(t), u(t)), and S(t) ← fs(x

(t−1), s(t−1), u(t−1)).

5. P (u) encodes the probability distribution over the exogenous variables U .

Definition 5. Let Fexp denote a set of functions between the current state s(t) and the
action x(t). Formally, Fexp is defined as Fexp = {π | π : S → X}.

For a standard MDP model taking as input the current state, Filar and Vrieze (2012)
showed that an optimal policy π∗ must be contained in Fexp. Generally, MDP algorithms
compute the optimal policy by learning how good it is for an agent to be in a certain state or
perform a certain action, which is encoded through the value and state-action value functions
(Van Otterlo and Wiering, 2012). In order to understand optimality in the presence of UCs,
we re-write these functions in terms of MDPUCs.

Definition 6. Given a MDPUC model M〈γ, U,X, Y, S, F, P (u)〉, an arbitrary deterministic
policy π, the value function starting from state s(t) and thereafter following policy π is
defined as:

V π(s(t)) = E
[ ∞∑
k=0

γkY
(t+k)

x([t,t+k])=π
| s(t)

]
(1)

The state-action value function starting from state s(t), taking action x(t), and thereafter
following policy π is defined as:

Qπ(s(t), x(t)) = E
[ ∞∑
k=0

γkY
(t+k)

x(k),x([t+1,t+k])=π
| s(t), x(t)

]
(2)

One convenient property of value and state-action value functions is that they can be
written recursively, which form the basis for most MDP learning algorithms and are often
referred as the Bellman Equation. We derive below the recursive expressions for these
functions for a given MDPUC instance.

Theorem 1. Given a MDPUC model M〈γ, U,X, Y, S, F, P (u)〉, for any policy π ∈ Fexp,

state s(t), and action x(t), the value function V π(s(t)) can be recursively written as:

E
[
Y

(t)

x(t)
| s(t)

]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

P

(
s
(t+1)

x(t)
| s(t)

)∣∣∣∣
x(t)=π

V
π
(s

(t+1)
) (3)

The state-action value Qπ(s(t), x(t)) can be recursively written as:

E
[
Y

(t)

x(t)
| s(t)

]
+ γ

∑
s(t+1)∈S

P

(
s
(t+1)

x(t)
| s(t)

)
V
π
(s

(t+1)
) (4)

The crucial step in the proof is to show that the Markovian property holds in MDPUCs.
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Lemma 1 (Markovian Property in MDPUCs). For a MDPUC model M = 〈γ, U,X, Y, S, F, P (u)〉,
a policy π ∈ Fexp and a starting state s(t), the agent performs actions do(X(t) = x(t)) at

round t and do(X([t+1,t+k]) = π) afterwards (k ∈ Z+), the following statement holds:

P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t)
, s(t)

)
= P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1)

)
Lemma 1 implies that all previous states and actions can be best summarized by the

current state. We note that Theorem 1 coincide with Bellman Equation representation for
standard MDPs. However, we are not aware of any proof of Theorem 1 with the treatment
of UCs. Our analysis depends on SCMs and three axioms of counterfactuals Pearl (2000,
Sec. 7.3.1). We invite readers to check Appendix 2 for details.

Counterfactual Policies

We consider in this section more elaborated counterfactual sentences of the form YX=x|X =
x′, which can be read as “given that X = x′, what would the value of Y be had X been
x (contrary to the fact),” where x 6= x′. In contrast with the experimental counterfactuals
discussed above in the context of Fexp, these more involved counterfactual quantities are
not in general estimable from data, except for some special conditions (Pearl, 2000, Ch. 9).

Somewhat surprisingly, Bareinboim, Forney, and Pearl (2015) noted in the context of
MABs that if the decision flow is interrupted just before the agent executes decision x′, and
then X is randomized conditioned on x′, the counterfactual above can in fact be evaluated.
The agent’s intuition x′ is the decision that it would be taken had the system not been
submitted to an intervention, which encodes information about the state of the UCs. In fact,
standard randomization procedures wash this information out. To avoid this problem, we
consider in the sequel a class of counterfactual policies that are sensible to, and incorporate
the notion of intuition.

Definition 7. Let Fctf denote a set of functions between the current state s(t), intuition
x′(t), and the action x(t). Formally, Fctf is defined as Fctf = {π|π : S ×X → X}.

In the sequel, we accommodate the notion of intuition x′(t) in the value and state-value
functions.

Definition 8. Given an MDPUC instance M〈γ, U,X, Y, S, F, P (u)〉 and an arbitrary de-
terministic policy function π, the value function starting from state s(t), intuition x′(t), and
thereafter following policy π is defined as:

V π(s(t), x′(t)) = E[

∞∑
k=0

γkY
(t+k)

x([t,t+k])=π
| s(t), x′(t)] (5)

The state-action value starting from state s(t), intuition x′(t), taking action x(t), and there-
after following policy π is defined as:

Qπ(s(t), x′(t), x(t)) = E[
∞∑
k=0

γkY
(t+k)

x(t),x([t+1,t+k])=π
| s(t), x′(t)] (6)

Since Fctf operates with a richer context than Fexp, we can easily prove the following
theorem:

Theorem 2. Given an MDPUC instance M〈γ, U,X, Y, S, F, P (u)〉, let π∗exp = arg maxπ∈Fexp V
π(s(t))

and π∗ctf = arg maxπ∈Fctf V
π(s(t), x′(t)). For any state s(t), the following statement holds:

V π
∗
exp(s(t)) ≤ V π∗ctf (s(t)) (7)

More specifically, the equality does not always hold. If UCs are not present, the equality
holds.
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Theorem 2 states that whenever UCs are not present, algorithms that are not sensitive
to the notion of intuition will perform equally well as the ones that are. 8 More strongly,
it provides a guarantee that whenever UCs exist and the intuition is available, one should
search in the space of counterfactual policies Fctf . To leverage this fact, we derive recursive
expressions for Eqs. 5 and 6 so as to allow a more efficient exploration of this search space.

Theorem 3. For any policy π ∈ Fctf , state s(t), intuition x′(t), and action x(t), the value

function V π(s(t), x′(t)) can be recursively written as:

E
[
Y

(t)

x(t)
| s(t), x′(t)

]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

∑
x′(t+1)∈X

P

(
s
(t+1)

x(t)
, x
′(t+1)

x(t)
| s(t), x′(t))

)∣∣∣∣
x(t)=π

V π(s(t+1), x′(t+1))

(8)

The state-action value function Qπ(s(t), x′(t), x(t)) can be recursively written as:

E
[
Y

(t)

x(t)
| s(t), x′(t)

]
+ γ

∑
s(t+1)∈S

∑
x
′(t+1)∈X

P

(
s
(t+1)

x(t)
, x
′(t+1)

x(t)
| s(t), x′(t)

)
V π(s(t+1), x′(t+1)) (9)

The crucial step of the proof is to show that the Markovian property still holds in
counterfactual settings.

Lemma 2 (Counterfactual Markovian Property). For a MDPUC model M = 〈γ, U,X, Y, S, F, P (u)〉,
a policy π ∈ Fctf , a starting state s(t), and an intuition x′(t), the agent performs actions

do(X(t) = x(t)) at round t and do(X [t+1,t+k] = π) afterwards (k ∈ Z+), the following
statement holds:

P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t)
, x
′(t+1)

x(t)
, s(t), x

′(t)
)

= P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1), x
′(t+1)

)
Proofs are provided in Appendix 2. Lemma 2 implies that all previous states, actions

and intuitions can be best summarized by the current state and intuition. We note an
interesting feature that follows from Theorem 3. The agent’s intuition x′(t) and the state
s(t) have the same syntactic form in the recursive expressions of the value and action-value
functions (Eqs. 8 and 9). In practice, therefore, as long as the counterfactual quantities

E
[
Y

(t)

x(t) | s(t), x′(t)
]

and P
(
s
(t+1)

x(t) , x
′(t+1)

x(t) | s(t), x′(t)
)

can be empirically evaluated, we can
leverage state-of-art MDP algorithms to learn an optimal counterfactual policy in Fctf by
simply operating on the augmented state s′(t) encompassing both state and intuition (i.e.,
s′(t) = (s(t), x′(t))).

Applications and Experiments

Our goal in this section is to operationalize an intent-specific randomization strategy based
on Theorem 3 in MDP online learning scenarios.

We take MORMAX (Szita and Szepesvári, 2010), a state-of-art MDP online learning
algorithm, as an example and apply the state augmentation which goes as follows:

1. Given an MDPUC instance M〈γ, U,X, Y, S, F, P (u)〉, we first translate M to a stan-
dard MDP instance M ′〈S′, X ′, T,R〉, where the augmented state S′ = S×X, X ′ = X,

T = P (s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)), and R = P (y
(t)

x(t) | s(t), x′(t)).
2. We populate the transition function and reward function table with observational

samples, namely 9: P (s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x(t)) = P (s(t+1), x(t+1) | s(t), x(t)) and

P (y
((t)

x(t) | s(t), x(t)) = P (y(t) | s(t), x(t)). Mark the prepopulated entries as known.

8It is immediate to see that whenever UCs do not exist, the counterfactual distributions reduce to their
experimental counterparts following the independence YX ⊥⊥ X′ (Pearl, 2000, Ch. 7).

9We follow the seeding rationale introduced in (Bareinboim, Forney, and Pearl, 2015) where constraints
across distributions are exploited whenever intuition and decision agree, which follow from the consistency
property (Pearl, 2000, pp. 229).
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Figure 3: Simulation results for Experiment 1 comparing MORMAX (search within Fexp),
MORMAXS (search within Fctf ), and MORMAXC (search within Fctf while leveraging
observational data through seeding).

3. Finally, we call MORMAX with the augmented MDP instance M ′ and transferred
samples.

Candidate Algorithms. We compare three variants of the MORMAX algorithm: vanilla
(called MORMAX), MORMAX modified with steps 1 and 3 to consider counterfactual poli-
cies (MORMAXS), and MORMAX searching within the counterfactual space and seeding,
which include all steps described above (MORMAXC).
Evaluation Metrics. The performance is evaluated with standard metrics: (1) the cu-
mulative reward per episode averaging over 800 runs, and (2) the cumulative reward for
250 episodes. Our metrics compare algorithms’ policies to the optimal policy computed
by standard MDP planning algorithms (value iteration and policy iteration) assuming all
confounders are available, though these variables are not directly available to the agent. We
believe this is fair for our examples since it allows the comparison of our algorithm against
a truly optimal policy with full access to the UCs.

We performed experiments across multiple parametrizations and settings for both the
medical treatment and the job training program (Appendix 1). We provide next one of such
parametrizations.
Experiment 1: “Incapable Doctor.” This parametrization represents the scenario
where the transition probability function is the same under observational and experimental
conditions, but the reward function is confounded by M (t) and E(t). As shown in Fig. 2,
the natural inclination of the physician led to a policy worse than random guessing while
standard MDP algorithms’ performed similarly to the randomized policy (i.e., picking the
treatment at random at each round).

Furthermore, the results shown in Fig. 3 support the causal approach. Specifically,
the simulation reveals an improvement in cumulative reward obtained by MORMAXC
(2.0574 × 104) compared to MORMAXS (2.0335 × 104). We can also see from the av-
erage reward per episode graph that MORMAXC shows a faster convergence rate than
MORMAXS, which corroborates with the view that the sample transferring procedure and
leveraging observational data can be helpful. Surprisingly, MORMAXC is able to converge
to an optimal policy in the very beginning. The standard MORMAX, predictably, is not a
competitor and experiences a relatively low cumulative reward (1.3278× 104).

Overall, these results confirm that algorithms with the augmented state, which search
for the optimal counterfactual policy, converge to a higher expected return; the samples
transferring procedure allows algorithms to converge at a faster pace. These conclusions are
not unique to this specific setting, but also replicate across a wide range of parametrizations
(Appendix 1, Supplementary Material).
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Conclusion

We studied the problem of finding optimal policies for MDPs when unobserved confounders
are present (MDPUC). We showed that MDPUCs can be found in practical settings and
represent a natural formulation for decision problems when unobserved confounders (UCs)
exist. Using causal semantics, we acknowledged the existence of two classes of policies –
experimental (Fexp) and counterfactual (Fctf ). We then showed that agents should search
for an optimal policy within the counterfactual class (Fctf ) instead of the experimental one
(Fexp) whenever UCs are present (Thm. 2). Through a syntactic transformation of the state
variable allowed by Thm. 3, we operationalized this search strategy (Alg. 1) and showed
that it improves state-of-the-art algorithms both in terms of speed and convergence.
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Appendix A. Experimental Results and Applications

In this section, we discuss the performance of the algorithms and provide the full parametriza-
tions of the medical treatment discussed in Sec. 2 of the paper and the job training program
(Heckman, 1992). We also discuss simulations across a wide range of parametrizations for
the general case when both the transition and reward probabilities are confounded.

Medical Treatment

Recall that the patient’s health score is affected by the patient’s mood M (t) ∈ {0, 1} (0 for
positive, 1 for negative) and socioeconomic status (SES) E(t) ∈ {0, 1} (0 for wealthy, 1 for
poor) at each time step. Further, the patient has an equal chance of having bad/good mood
and financial difficulties, i.e., P (M (t) = 0) = 1

2 , P (E(t) = 0) = 1
2 . The physician’s own

policy is defined as X(t) ← πndt(S(t),M (t), E(t)) = S(t) ⊕M (t) ⊕ E(t), where ⊕ represents
the exclusive OR operator.

The reward probability function P (Y (t) | S(t),M (t), E(t), X(t)) and the transition prob-
ability function P (S(t+1) | S(t), X(t)) are provided in Tables 1 and 2. The entries encode
the probabilities for Y (t) = 1. The doctor’s natural choice of action (i.e., following πndt) are
indicated by asterisks.

S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.2 0.9 0.8 ∗0.3
X(t) = 1 0.9 ∗0.2 ∗0.3 0.8

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.7 ∗0.2 ∗0.1 0.8

X(t) = 1 ∗0.2 0.7 0.8 ∗0.1

Table 1: Reward probability table for health score Y (t) = 1, which is P (Y (t) = 1 |
S(t),M (t), E(t), X(t)). The doctor’s natural choice under S(t),M (t), E(t) are indicated by
asterisks.
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Figure 4: (a, b) Average reward per episode plot and cumulative reward plot (right) for pa-
tient treatment example. (c, d) Simulation results comparing standard Mormax (Mormax),
S-Empowered Mormax (MormaxS), and CausalMormax (MormaxC)

S(t) = 0 S(t) = 1

X(t) = 0 0.9 0.3

X(t) = 1 0.7 0.8

Table 2: The transition probability table P (S(t+1) = 0 | S(t), X(t)).

Social training program

We describe next a training program that is a prototypical social intervention (Heckman,
1992). There is a government sponsored training center offering job training where the
attendant is instructed to determine whether the salary of a given applicant is below or
above a certain threshold (named status S(t)), and then decide whether to accept or reject
this applicant (X(t)). The salary status changes periodically and is measured at each time
she/he visits the center – the same (S(t+1)) is known to be affected by the previous status
S(t) and decision X(t). To evaluate the performance of the training center, the government
estimates an overall score Y (t), which is a function of the center previous decisions (X(t))
and the applicants’ salary status (S(t)). The goal is to maximize the center’s cumulative
score over a long period. Clearly, this setting can be modeled as an MDP problem where
the optimal criterion is to maximize the cumulative discounted reward.

In reality, however, this is just part of the story since the applicant’s salary status is also
affected by certain unobserved confounders (UCs). For instance, her health level M (t) and
family’s socioeconomic condition E(t) also affects S(t). The center’s attendant tries to assess
this information to make a “more informed decision” – i.e., action X(t) is a function of all
these factors (i.e., M (t), E(t), S(t)), but does not record the UCs in the center’s database.
The main difference between this setting (Fig. 1(d), paper) and the medical treatment (Fig.
1(a), paper) is that the edge connecting X(t) and S(t+1) are confounded by the unobserved
variables M (t) and E(t) (instead of X(t) and Y (t)), so the estimation of the transition
probability requires a more refined treatment.

S(t) = 0 S(t) = 1

X(t) = 0 0.3 0.9

X(t) = 1 0.6 0.7

Table 3: The reward probability table for government score is P (Y (t) = 1|S(t), X(t)).

The reward probability and transition probability functions are given in Tables 3 and
4. We first perform experiments based on standard MDP solvers and the results are shown
in Fig. 4(a,b). Similarly to the medical example, the optimal policy opt can be computed
using standard MDP algorithms when M (t) and E(t) are observed, which we will use as
a baseline for comparison. The experimental results indicate that the attendant’s policy
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(i.e., ndt) is worse than randomized-based strategies; also, they show that standard MDP
algorithms perform no better than a purely randomized policies in Fexp. We then run the
empowered MORMAX strategy as described in the paper and obtain the results shown in
Fig. 4(c,d). The results support the superiority of intent-based randomization strategy –
MORMAXC converges faster than MORMAXS while pure MORMAX does not converge.

S(t) = 0

M (t) = 0 M (t) = 1

D(t) = 0 D(t) = 1 D(t) = 0 D(t) = 1

X(t) = 0 0.7 ∗0.2 ∗0.4 0.8

X(t) = 1 ∗0.2 0.7 0.8 ∗0.4
S(t) = 1

M (t) = 0 M (t) = 1

D(t) = 0 D(t) = 1 D(t) = 0 D(t) = 1

X(t) = 0 ∗0.3 0.6 0.9 ∗0.2
X(t) = 1 0.6 ∗0.3 ∗0.2 0.9

Table 4: Transition probabilities P (S(t+1) = 0 | S(t),M (t), E(t), X(t)).

General Experiments

In this section, we perform experiments across five parametrizations describing qualitatively
different relationships between observational (ndt), experimental (Fexp), and counterfactual
(Fctf ) distributions. Our simulations consider the general setting where transition proba-
bility function and reward function are both confounded (Fig. 1(c), paper). Overall, the
experimental results confirm that counterfactual strategies that belongs in Fctf perform
better than experimental ones (from Fexp). The experimental procedure follows the same
guideline as described in the paper. The transition probability distribution remains the
same for all parametrizations and is described in Table 5, where {M (t), E(t)} confound the
function between the action X(t) and the state variable S(t).

S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.5 0.9 0.9 ∗0.4
X(t) = 1 0.9 ∗0.5 ∗0.4 0.9

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.9 ∗0.1 ∗0.2 0.8

X(t) = 1 ∗0.1 0.9 0.8 ∗0.2

Table 5: Transition probabilities for S(t+1) = 0, which is P (S(t+1) = 0|S(t),M (t), E(t), X(t)).
The agent’s natural choice of treatment under S(t),M (t), E(t) are indicated by asterisks.

We will use the label “S-powered” to denote algorithms that use intuition-based ran-
domization strategy, and “causal” to denote algorithms that use both intuition-based ran-
domization strategy and seeding (transfer) of observational data. We report the experi-
mental results below comparing the following algorithms: standard MORMAX, S-Powered
MORMAX (MORMAXS), CausalMORMAX (MORMAXC), standard UCRL2, S-powered
UCRL2 (UCRL2S), Causal UCLR2 (UCRL2C), Delayed-Q learning, S-powered Delayed-Q
Learning, standard SARSA, and S-powered SARSA (SARSAS).
Experiment 1 (“Incapable Agent”): The reward function is described in Table 6. In
this parametrization, the agent’s behavior is similar to the physician described in the med-
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ical treatment example. However, learning becomes harder because of the UCs between
action X(t) and S(t). Simulation results are appended after this section, see Figs. 5 and 6.
Intuition powered agents consistently outperform standard MDP algorithms. Agents with
transferred observational samples (UCRL2C and MORMAXC) demonstrate faster conver-
gence rate then agents without transferred samples (UCRL2S, MORMAXS, Delayed-QS
and SARSAS).

S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.2 0.9 0.8 ∗0.3
X(t) = 1 0.9 ∗0.2 ∗0.3 0.8

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.7 ∗0.2 ∗0.1 0.8

X(t) = 1 ∗0.2 0.7 0.8 ∗0.1

Table 6: Incapable Agent

Experiment 2 (“Capable Agent”): The reward function is described in Table 7. In this
parametrization, the “natural” policy of the agent (πndt) is already operating at the optimal
level. As expected, standard MDP algorithm wash out the positive intuition of the agent
that follows πndt, so it performs no better than random guessing. The simulation results are
shown in Figs. 7 and 8. The results suggests that intuition powered algorithms demonstrate
consistent improvements over standard MDP algorithms. Agents with transferred observa-
tional samples (UCRL2C and MORMAXC) that leverage the correct intuition demonstrate
faster convergence rate then agents without transferred samples (UCRL2S, MORMAXS,
Delayed-QS and SARSAS).

S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.9 0.2 0.3 ∗0.8
X(t) = 1 0.2 ∗0.9 ∗0.8 0.3

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.2 ∗0.7 ∗0.6 0.3

X(t) = 1 ∗0.7 0.2 0.3 ∗0.6

Table 7: Capable Agent

Experiment 3 (“Paradoxical Switching”): The reward function is shown in Table 8. In
this parametrization, the value function estimated based on the observational samples sug-
gests opposite action compared with the reality because of the presence of UCs. If the agent
naively transfers observational samples as if they were obtained through randomizations, it
could cause significant negative effect on the agent’s performance. The simulation result
are shown in Figs. 9 and 10, which suggest that intuition powered algorithms demonstrate
consistent improvements over standard MDP algorithms. Perhaps surprisingly to some,
agents with transferred observational samples (UCRL2C and MORMAXC) demonstrate
faster convergence regardless of potential negative transfer effect. This seems to suggest
that our transfer strategy is robust against confounding bias.
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S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.3 0.6 0.6 ∗0.2
X(t) = 1 0.8 ∗0.2 ∗0.1 0.9

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.8 ∗0.1 ∗0.1 0.8

X(t) = 1 ∗0.2 0.6 0.6 ∗0.3

Table 8: Paradoxical Switching

Experiment 4 (“Sometimes Switching”): The reward function is shown in Table 9.
In this parametrization, the confounding bias still exists based on the parametrization, but
it is irrelevant for the action’s choice. The simulation results are shown in Figs. 11 and 12.
We can see that intuition-powered algorithms achieve similar performance as standard MDP
algorithms since it work as if the UCs are not there. Interestingly, this simulation suggests
that our strategy also performs well in simpler settings and can be generally applied when
UCs are not known to be present.

S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.6 0.7 0.7 ∗0.4
X(t) = 1 0.1 ∗0.1 ∗0.2 0.15

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.2 ∗0.3 ∗0.2 0.4

X(t) = 1 ∗0.6 0.4 0.7 ∗0.5

Table 9: Sometimes Switching

Experiment 5 (“Non-optimal”): The reward function is described in Table 10. In this
parametrization, the decision is a function of the state and the UCs, but by construction,
the specific numbers imply probabilistic independence. This implies that the intuition does
not capture any additional information about the reward and state distributions. The
simulation results are shown in Figs. 13 and 14 and demonstrate that this is a challenging
parametrization for all MDP algorithms.

S(t) = 0

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.3 0.6 0.6 ∗0.7
X(t) = 1 0.8 ∗0.3 ∗0.3 0.2

S(t) = 1

M (t) = 0 M (t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.5 ∗0.4 ∗0.6 0.4

X(t) = 1 ∗0.2 0.9 0.1 ∗0.7

Table 10: Non-optimal
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Figure 5: Incapable Agent: Cumulative Reward and Average Return per Episode

Figure 6: Incapable Agent: Probability of Selecting Optimal Action at given state
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Figure 7: Capable Agent: Cumulative Reward and Average Return per Episode

Figure 8: Capable Agent: Probability of Selecting Optimal Action at given state
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Figure 9: Paradoxical Switching: Cumulative Reward and Average Return per Episode

Figure 10: Paradoxical Switching: Probability of Selecting Optimal Action at given state
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Figure 11: Sometimes Switching: Cumulative Reward and Average Return per Episode

Figure 12: Sometimes Switching: Probability of Selecting Optimal Action at given state
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Figure 13: Non-Optimal: Cumulative Reward and Average Return per Episode

Figure 14: Non-Optimal: Probability of Selecting Optimal Action at given state
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Appendix B. Proofs

We start by introducing the notations and theorems used throughout the proofs. Recall
that we use X([i,j]) to represent the sequence (X(i), X(i+1), . . . , X(j)). X([i,j]) is an empty
sequence if i > j.

Lemma 3. (Conditional Interventions, Pearl (2000, Sec. 4.2)) Let P
(
yx=f(z)|, z

)
denote

the effect of do(X = f(x)) on a variable Y given Z = z. Then, P
(
y|do(x = f(z)), z

)
is

equivalent to:

P
(
yx=f(z)|z

)
= P

(
yx|z

)∣∣
x=π(z)

Proof. Assuming that f(z) is a function that takes an argument z and decides for x. When
Z = z is fixed, X is also fixed with the value x = f(z). The effect P

(
yx=f(z)|z

)
is equivalent

to the effect of an atomic intervention P
(
yx|z

)
with fixed value x = f(z). We then have:

P
(
yx=f(z)|z

)
=
∑
x∈X

P
(
yx|z

)
I{x = f(z)} = P

(
yx|z

)∣∣
x=f(z)

Axiom 1. (The Axioms of Counterfactuals, Pearl (2000, Sec. 7.3.1)) In all causal models,
composition, effectiveness and reversibility properties hold.
Composition: For any three sets of endogenous variables X,Y, and W in a causal model,
we have:

Wx = w ⇒ Yxw = Yx

Effectiveness: For any all sets of variables X and W ,

Xxw = x

Reversibility: For any two variables Y and W and any set of variables X,

(Yxw = y)&(Wxy = w)⇒ Yx = y

Composition, effectiveness and reversibility are proved to be sound and complete in
all causal models. To translated the assumptions embodied in the graphical model into
the language of counterfactuals, we also introduces two rules: exclusion restrictions and
independence restrictions.

Lemma 4. (Exclusion restrictions, Pearl (2000, Sec. 7.3.2)) For every variables Y having
parents PAY for every set of variables Z ⊂ V , V disjoint of PAY , we have:

YpaY = YpaY ,Z

Lemma 5. (Independence restrictions, Pearl (2000, Sec. 7.3.2)) If Z1, . . . , Zk is any set
of nodes in V not connected to Y via paths containing only U variables, we have:(

YpaY ⊥⊥ Z1paZ1
, . . . , ZkpaZk

)
We also introduce the concept of C-component (?), which will be useful in our later

proofs.

Definition 9. (C-component, ?) Let G be a causal diagram such that a subset of its
bidirectional arcs forms a spanning tree over all vertices in G. Then G is a C-component.
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We start off by proving a probabilistic decomposition based on C-components which
holds in all SCMs. This decomposition implies a more generalized and stronger independence
relations suggested by the independence restrictions rule.

Theorem 4. Given a SCM M〈U, V, F, P (u)〉, assume that V is partitioned into k C-
components S(1), S(2), . . . , S(k) and denote N (j) the set of U variables that are parents of

those variables in S(j). Let vpa denote the sequence {v(i)
pa(i)
|∀V (i) ∈ V, , V (i) = v(i)} and s

(j)
pa

the sequence {v(i)
pa(i)
|∀V (i) ∈ Sj , , V (i) = v(i)}. P (vpa) can be decomposed into a product of

P (s
(j)
pa )’s:

P (vpa) =

k∏
j=1

P (s(j)pa ) (10)

Proof. Recall that V
(i)

pa(i)
encodes the operation that fixes the value PA(i) = pa(i) and decides

the value V (i) = f(pa(i), N (j)). The randomness of variable V (i) is fully encoded by the

exogenous variable N (j). Thus, P (s
(j)
pa ) can be written as follows:

P (s(j)pa ) =
∑

{N(j)=n(j)}

∏
{V (i)∈S(j),V (i)=v(i)}

I{v(i) = f(pa(i), n(j))}P (n(j)) (11)

By definition, P (vpa) equals to:

P (vpa) =
∑

{U=(n(1),...,n(k))}

∏
{V (j)∈V,V (j)=v(j)}

I{v(j) = f(pa(j), n(j))}
k∏
j=1

P (n(j))

=
∑

{N(i)=n(j)}

∏
{V (j)∈S(j),V (j)=v(j)}

I{v(j) = f(pa(j), n(j))}P (n(i))

︸ ︷︷ ︸
Part 1

·
∑

{U\N(i)=u\n(i)}

∏
{V (j)∈V \S(j),V (j)=v(j)}

I{v(j) = f(pa(j), n(j))}
k∏

j=1,j 6=i

P (n(j))

︸ ︷︷ ︸
Part 2

where u\n(i) = (n(1), . . . , n(i−1), n(i+1), . . . , n(k)). The last step holds because for variables
in S(j), they are only affected by N (j), we can move S(j) and N (j) outside the summation

of U\N (i). Note that part 1 is exactly P (s
(i)
pa) defined in Equation 11. We have that:

P (vpa) = P (s(i)pa)
∑

{U\N(i)=u\n(i)}

∏
{V (j)∈V \S(j),V (j)=v(j)}

I{v(j) = f(pa(j), n(j))}
k∏

j=1,j 6=i

P (n(j))

︸ ︷︷ ︸
Part 2

By recursively applying the above process on the part 2 for remaining k − 1 C-components
S(1), S(2), . . . , S(i−1), S(i+1), . . . , S(k), we have that:

P (vpa) =

k∏
j=1

P (s(j)pa )

which proves the statement.

Lemma 6. Given a SCM M〈U, V, F, P (u)〉, assume that V is partitioned into k C-components

S(1), S(2), . . . , S(k). Let Vpa denote the set {V (i)

pa(i)
|∀V (i) ∈ V } and S

(j)
pa denote the set
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{V (i)

pa(i)
|∀V (i) ∈ S(j)} where pa(i) is an arbitrary value for PA(i). The following independence

relation holds:

(∀i ∈ {1, . . . , k})
(
S(i)
pa ⊥⊥ Vpa\S(i)

pa

)
(12)

where Vpa\S(i)
pa is the set difference between Vpa and S

(i)
pa .

Proof. The independence relation 12 is implied by the decomposition 10.

We now shift the gear and focus on MDPUCs. The general procedure of proof is follow-
ing: We first find a set of equivalent events; We derive a set of independence relations with
the equivalent events and Lemma 6; Finally, we prove Theorem 1, 2, and 3 with derived
independence relations.

Lemma 7. Given a MDPUC model M〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t), for
any ∀s(t), . . . , s(t+k) ∈ S, x(t), . . . , x(t+k) ∈ X, k ∈ Z+, following events are equivalent:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t) (13)

S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S(t) = s(t) (14)

Proof. Step 1: 13 ⇒ 14. We will prove this by induction.
Base Case: When k = 1, for the event 13, we have

S
(t+1)

x(t),s(t)
= s(t+1), S

(t)

x(t) = s(t)

⇒ S
(t+1)

x(t) = s(t+1), S
(t)

x(t) = s(t) By composition

⇒ S
(t+1)

x(t) = s(t+1), S(t) = s(t) By exclusion restrictions

The last step is the event 14 when k = 1.
Induction Step: Suppose the event 13 ⇒ 14 is true for case k − 1, we want to show that
it still holds for case k. By composition, we have that:

S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1) ⇒ S

(t+k)

x([t,t+k−1]),s([t,t+k−1]) = S
(t+k)

x([t,t+k−1]),s([t,t+k−2])

By continuing the above process for conditions S
(t+k−2)
x([t,t+k−1]),s([t,t+k−3]) = s(t+k−2), . . . , S

(t)

x([t,t+k−1]) =

s(t), we have that:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = S
(t+k)

x([t,t+k−1]) = s(t+k)

Since for ∀k ≥ 1, S(t+k−1) has all of its parents fixed, by exclusion restrictions, we have
that:

S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = S

(t+k−1)
x([t,t+k−2]),s([t,t+k−2])

S
(t+k−2)
x([t,t+k−1]),s([t,t+k−3]) = S

(t+k−2)
x([t,t+k−2]),s([t,t+k−3])

...

S
(t)

x([t,t+k−1]) = S
(t)

x([t,t+k−2])

This leads to the condition 13 for case k − 1:

S
(t+k−1)
x([t,t+k−2]),s([t,t+k−2]) = s(t+k−1), S

(t+k−2)
x([t,t+k−2]),s([t,t+k−3]) = s(t+k−2), . . . , S

(t)

x([t,t+k−2]) = s(t)

Since the statement for case k − 1 holds, we have that:

S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S(t) = s(t)
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Conclusion: By the principle of induction, the statement is true or all k ∈ Z+.

Step 2: 14 ⇒ 13. We first consider that given S(t) = s(t), S
(t+k)

x([t,t+k−1]) = s(t+k) can be
written as:

S
(t+k)

x([t,t+k−1]) = s(t+k), S(t) = s(t)

⇒ S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t)

x([t,t+k−1]) = s(t) By exclusion restrictions

⇒ S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S

(t)

x([t,t+k−1]) = s(t) By composition

⇒ S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S(t) = s(t) By exclusion restrictions

Given S(t) = s(t), apply the above process to variables S
(t+k)

x([t,t+k−1]) = s(t+k), . . . , S
(t+1)

x(t) =

s(t+1), we have that:

S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S

(t+k−1)
x([t,t+k−2]),s(t)

= s(t+k−1), . . . , S
(t+1)

x(t),s(t)
= s(t+1), S(t) = s(t)

Since the variable S
(t+1)

x(t),s(t)
has all its parents fixed, it is subjected to exclusion restrictions.

we can use S
(t+1)

x(t),s(t)
as S(t) and repeat our previous process. Given S

(t+1)

x(t),s(t)
= s(t+1),

S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k) can be written as:

S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S

(t+1)

x(t),s(t)
= s(t+1)

⇒ S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S

(t+1)

x([t,t+k−1]),s(t)
= s(t+1) By exclusion restrictions

⇒ S
(t+k)

x([t,t+k−1]),s([t,t+1]) = s(t+k), S
(t+1)

x([t,t+k−1]),s(t)
= s(t+1) By composition

⇒ S
(t+k)

x([t,t+k−1]),s([t,t+1]) = s(t+k), S
(t+1)

x(t),s(t)
= s(t+1) By exclusion restrictions

Given S
(t+1)

x(t),s(t)
= s(t+1), apply the above process to variables S

(t+k)

x([t,t+k−1]),s(t)
= s(t+k), . . . , S

(t+2)

x([t,t+1],s(t)
=

s(t+2), we have that:

S
(t+k)

x([t,t+k−1]),s([t,t+1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]),s([t,t+1]) = s(t+k−1), . . . , S

(t+2)

x([t,t+1]),s([t,t+1]) = s(t+2), . . . , S(t) = s(t)

Now the variable S
(t+2)

x([t,t+1]),s([t,t+1]) has all its parents fixed, we can again repeat our previous

process by using S
(t+1)

x(t),s(t)
as S(t). Continue this procedure for all variables, in the end, we

have:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t+1)

x(t),s(t)
= s(t+1), S(t) = s(t)

Note that for all ∀k ∈ Z+, the variable S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k) has all of its parents

fixed. By exclusion restrictions, we have:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([1,t+k−1]) = s(t)

which is the event 13.

Lemma 8. Given a MDPUC model M〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t), for
any ∀s(t), . . . , s(t+k) ∈ S, x(t), . . . , x(t+k) ∈ X, k ∈ Z+, following events are equivalent:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t)

(15)

S
(t+k)

x([t+1,t+k−1]) = s(t+k), S
(t+k−1)
x([t+1,t+k−2]) = s(t+k−1), . . . , S(t+1) = s(t+1), S(t) = s(t), X

(t)

s(t)
= x(t)

(16)
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Proof. Step 1: 15 ⇒ 16. By Lemma 7, event 15 is equivalent to:

S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S

(t+1)

x(t) = s(t+1), S(t) = s(t), X
(t)

s(t)
= x(t)

Given S(t) = s(t), X
(t)

s(t)
= x(t), the variable S

(t+k)

x([t,t+k−1]) = s(t+k) can be written as:

S
(t+k)

x([t,t+k−1]) = s(t+k), S(t) = s(t), X
(t)

s(t)
= x(t)

⇒ S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t)

x([t,t+k−1]) = s(t), X
(t)

x([t+1,t+k−1]),s(t)
= x(t) By exclusion restrictions

⇒ S
(t+k)

x([t+1,t+k−1]),s(t)
= s(t+k), S

(t)

x([t,t+k−1]) = s(t), X
(t)

x([t+1,t+k−1]),s(t)
= x(t) By composition

⇒ S
(t+k)

x([t+1,t+k−1]),s(t)
= s(t+k), S

(t)

x([t+1,t+k−1]) = s(t), X
(t)

s(t)
= x(t) By exclusion restrictions

⇒ S
(t+k)

x([t+1,t+k−1]) = s(t+k), S(t) = s(t), X
(t)

s(t)
= x(t) By composition and exclusion restrictions

By applying the above steps to variables S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S

(t+1)

x(t) =

s(t+1), we have that:

S
(t+k)

x([t+1,t+k−1]) = s(t+k), S
(t+k−1)
x([t+1,t+k−2]) = s(t+k−1), . . . , S(t+1) = s(t+1), S(t) = s(t), X

(t)

s(t)
= x(t)

which is the event 16
Step 4: 16 ⇒ 15. As for the event 16, given S(t) = s(t), X

(t)

s(t)
= x(t), the variable

S
(t+k)

x([t+1,t+k−1]) = s(t+k) can be written as:

S
(t+k)

x([t+1,t+k−1]) = s(t+k), S(t) = s(t), X
(t)

s(t)
= x(t)

⇒ S
(t+k)

x([t+1,t+k−1]) = s(t+k), S
(t)

x([t+1,t+k−1]) = s(t), X
(t)

x([t+1,t+k−1]),s(t)
= x(t) By exclusion restrictions

⇒ S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S

(t)

x([t+1,t+k−1]) = s(t), X
(t)

x([t+1,t+k−1]),s(t)
= x(t) By composition

⇒ S
(t+k)

x([t,t+k−1]),s(t)
= s(t+k), S

(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t) By exclusion restrictions

⇒ S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t) By composition

⇒ S
(t+k)

x([t,t+k−1]) = s(t+k), S(t) = s(t), X
(t)

s(t)
= x(t) By exclusion restrictions

By applying the above steps to variables S
(t+k)

x([t+1,t+k−1]) = s(t+k), S
(t+k−1)
x([t+1,t+k−2]) = s(t+k−1), . . . , S(t+1) =

s(t+1), we have that:

S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S

(t+1)

x(t) = s(t+1), S(t) = s(t), X
(t)

s(t)
= x(t)

By Lemma 7, the above event is equivalent to:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t)

which is the event 16.

Lemma 9. Given a MDPUC model M〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t), for
any ∀s(t), . . . , s(t+k) ∈ S, x(t), . . . , x(t+k) ∈ X, k ∈ Z+, if any of following statements holds:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t) (17)

S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S(t) = s(t) (18)

we must have:

S
(t+k+1)

x(t+k),s(t+k)
= S

(t+k+1)

x([t,t+k]),s([t,t+k])
= S

(t+k+1)

x([t,t+k]) (19)

Y
(t+k)

x(t+k),s(t+k)
= Y

(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) (20)
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Proof. Since by Lemma 7, events 17, 18 equivalent, we can focus on the condition 17.

Step 1: the statement 19 holds. Since the variable S
(k+1)

x(k),s(k)
has all its parents fixed,

S
(t+k+1)

x(t+k),s(t+k)
= S

(t+k+1)

x([t,t+k]),s([t,t+k])
is obvious by exclusion restrictions. Let us now consider

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= S

(t+k+1)

x([t,t+k]) , for any ∀s(t+k+1) ∈ S, let S
(t+k+1)

x([t,t+k]),s([t,t+k])
= s(t+k+1). Given

condition 17, by exclusion restrictions, we have that:

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= s(t+k+1), S

(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k−1]) = s(t)

⇒ S
(t+k+1)

x([t,t+k]),s([t,t+k])
= s(t+k+1), S

(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k]) = s(t)

The above event is in fact case k + 1 in Lemma 7. By Lemma 7, we must have:

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= s(t+k+1), S

(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k]) = s(t)

⇔ S
(t+k+1)

x([t,t+k]) = s(t+k+1), S
(t+k)

x([t,t+k−1]) = s(t+k), . . . , S(t) = s(t)

This implies that:

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= S

(t+k+1)

x([t,t+k]) = s(t+k+1)

Step 2: the statement 20 holds. Since the variable Y
(t+k)

x(t+k),s(t+k)
has all its parents fixed,

Y
(t+k)

x(t+k),s(t+k)
= Y

(t+k)

x([t,t+k]),s([t,t+k])
is obvious by exclusion restrictions. Let us now consider

Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) . For any ∀y(t+k) ∈ Y , let Y
(t+k)

x([t,t+k]),s([t,t+k])
= y(t+k). Given

condition 17, by exclusion restrictions, we have:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t)

⇒ S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k]) = s(t)

Given S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), by composition, we have that:

S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k) ⇒ Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]),s([t,t+k−1])

By applying the above process given conditions S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k]) =

s(t), we must have:

Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) = y(t+k)

which proves the statement 20.

Lemma 10. Given a MDPUC model M〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t), for
any ∀s(t), . . . , s(t+k) ∈ S, x(t), . . . , x(t+k) ∈ X, k ∈ Z+, if any of following statements holds:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t)

(21)

S
(t+k)

x([t+1,t+k−1]) = s(t+k), S
(t+k−1)
x([t+1,t+k−2]) = s(t+k−1), . . . , S(t+1) = s(t+1), S(t) = s(t), X

(t)

s(t)
= x(t)

(22)

the following statements must hold:

S
(t+k+1)

x(t+k),s(t+k)
= S

(t+k+1)

x([t,t+k]),s([t,t+k])
= S

(t+k+1)

x([t,t+k]) = S
(t+k+1)

x([t+1,t+k]) (23)

Y
(t+k)

x(t+k),s(t+k)
= Y

(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) = Y
(t+k)

x([t+1,t+k]) (24)

26



Proof. Since by Lemma 8, events 21, 22 are equivalent, we can focus on the condition 21.

Step 1: the statement 23 holds. Since the variable S
(t+k+1)

x(t+k),s(t+k)
has all its parents fixed,

S
(t+k+1)

x(t+k),s(t+k)
= S

(t+k+1)

x([t,t+k]),s([t,t+k])
is obvious by exclusion restrictions. Let us now consider

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= S

(t+k+1)

x([t,t+k]) = S
(t+k+1)

x([t+1,t+k]) . For any ∀s(t+k+1) ∈ S, let S
(t+k+1)

x([t,t+k]),s([t,t+k])
=

s(t+k+1). Given condition 21, by exclusion restrictions, we have that:

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= s(t+k+1), S

(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t)

⇒ S
(t+k+1)

x([t,t+k]),s([t,t+k])
= s(t+k+1), S

(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k]) = s(t), X
(t)

s(t)
= x(t)

The above satisfies case k + 1 in 7 and 8, which leads to:

S
(t+k+1)

x([t,t+k]) = s(t+k+1), S
(t+k)

x([t,t+k−1]) = s(t+k), . . . , S(t) = s(t), X
(t)

s(t)
= x(t)

S
(t+k+1)

x([t+1,t+k]) = s(t+k+1), S
(t+k)

x([t+1,t+k−1]) = s(t+k), . . . , S(t+1) = s(t+1), S(t) = s(t), X
(t)

s(t)
= x(t)

This implies that:

S
(t+k+1)

x([t,t+k]),s([t,t+k])
= S

(t+k+1)

x([t,t+k]) = S
(t+k+1)

x([t+1,t+k]) = s(t+k+1)

Step 1: the statement 24 holds. Since the variable Y
(t+k)

x(t+k),s(t+k)
has all its parents fixed,

Y
(t+k)

x(t+k),s(t+k)
= Y

(t+k)

x([t,t+k]),s([t,t+k])
is obvious by exclusion restrictions. Let us now consider

Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) = Y
(t+k)

x([t+1,t+k]) . For any ∀y(t+k) ∈ Y , let Y
(t+k)

x([t,t+k]),s([t,t+k])
=

y(t+k). Given condition 21, by exclusion restrictions, we have:

S
(t+k)

x([t,t+k−1]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−1]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k−1]) = s(t), X
(t)

s(t)
= x(t)

⇒ S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k]),s([t,t+k−2]) = s(t+k−1), . . . , S

(t)

x([t,t+k]) = s(t), X
(t)

s(t)
= x(t)

Given S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), by composition, we have that:

S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k) ⇒ Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]),s([t,t+k−1])

By applying the above process given conditions S
(t+k)

x([t,t+k]),s([t,t+k−1]) = s(t+k), . . . , S
(t)

x([t,t+k]) =

s(t), we must have:

Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) = y(t+k)

Given condition 21, Lemma 7 implies that:

S
(t+k)

x([t,t+k−1]) = s(t+k), S
(t+k−1)
x([t,t+k−2]) = s(t+k−1), . . . , S(t) = s(t), X

(t)

s(t)
= x(t)

Given S
(t)

x([t,t+k]) = s(t), X
(t)

s(t)
= x(t), Y

(t+k)

x([t,t+k]) = y(t+k) can be written as:

Y
(t+k)

x([t,t+k]) = y(t+k), S
(t)

x([t,t+k]) = s(t), X
(t)

s(t)
= x(t)

⇒ Y
(t+k)

x([t,t+k]) = y(t+k), S
(t)

x([t,t+k]) = s(t), X
(t)

x([t+1,t+k]),s(t)
= x(t) By exclusion restrictions

⇒ Y
(t+k)

x([t+1,t+k]),s(t)
= y(t+k), S

(t)

x([t,t+k]) = s(t), X
(t)

x([t+1,t+k]),s(t)
= x(t) By composition

⇒ Y
(t+k)

x([t+1,t+k]),s(t)
= y(t+k), S

(t)

x([t+1,t+k]) = s(t), X
(t)

s(t)
= x(t) By exclusion restrictions

⇒ Y
(t+k)

x([t+1,t+k]) = y(t+k), S
(t)

x([t,t+k]) = s(t), X
(t)

s(t)
= x(t) By composition and exclusion restrictions

Therefore, the following statement must hold:

Y
(t+k)

x([t,t+k]),s([t,t+k])
= Y

(t+k)

x([t,t+k]) = Y
(t+k)

x([t+1,t+k]) = y(t+k)

which is the statement 24.
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Lemma 11. For a MDPUC model M = 〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t),
∀s(t), . . . , s(t+k) ∈ S, x(t), . . . , x(t+k) ∈ X,∀y(t+k) ∈ Y, k ∈ Z+, the following statements
holds:

P

(
s
(t+k+1)

x([t,t+k])
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)

x([t,t+k−2]) , . . . , s
(t)

)
= P

(
s
(t+k+1)

x([t+1,t+k]) | s
(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1)

)
(25)

P

(
y
(t+k)

x([t,t+k])
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)

x([t,t+k−2]) , . . . , s
(t)

)
= P

(
y
(t+k)

x([t+1,t+k]) | s
(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1)

)
(26)

Proof. We will only prove for Equation 25, since the proof for Equation 26 follows very
similar steps.

By Lemma 6, for any ∀y(t), . . . , y(t+k) ∈ Y , we have that:(
s
(t+k+1)

x(t+k),s(t+k)
, y

(t+k)

x(t+k),s(t+k)
, x

(t+k)

s(t+k)
⊥⊥ s(t+k)

x(t+k−1),s(t+k−1) , y
(t+k−1)
x(t+k−1),s(t+k−1) , x

(t+k−1)
s(t+k−1) , . . . , s

(t+1)

x(t),s(t)
, y

(t)

x(t),s(t)
, x

(t)

s(t)
, s(t)

)
⇒
(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ s(t+k)

x(t+k−1),s(t+k−1) , . . . , s
(t+2)

x(t+1),s(t+1) , s
(t+1)

x(t),s(t)
, x

(t)

s(t)
, s(t)

)
by decomposition axiom

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ s(t+k)

x([t,t+k−1]),s([t,t+k−1]) , . . . , s
(t+2)

x([t,t+k−1]),s([t,t+1]) , s
(t+1)

x([t,t+k−1]),s(t)
, s

(t)

x([t,t+k−1]) , x
(t)

s(t)

)
by exclusion restrictions

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ s(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t), x
(t)

s(t)

)
By Lemma 7

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ x(t)

s(t)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t)
)

by weak union

(27)

Similarly, we have that:(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ s(t+k)

x([t,t+k−1]),s([t,t+k−1]) , . . . , s
(t+2)

x([t,t+k−1]),s([t,t+1]) , s
(t+1)

x([t,t+k−1]),s(t)
, s

(t)

x([t,t+k−1]) , x
(t)

s(t)

)
⇒
(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), s(t), x

(t)

s(t)

)
By Lemma 8

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
⊥⊥ x(t)

s(t)
, s(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
by weak union

(28)

The independence relation 27 implies that

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t), x
(t)

s(t)

)
= P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t)
) (29)

Similarly, the independence relation 28 implies that:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), s(t), x

(t)

s(t)

)
= P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

) (30)
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Also, Lemma 7 and 8 imply that:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t), x
(t)

s(t)

)
= P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t,t+k−1]),s([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]),s([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]),s([t,t+1]) , s
(t+1)

x(t),s(t)
, s(t), x

(t)

s(t)

)
By Lemma 7

= P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), s(t), x

(t)

s(t)

)
By Lemma 8

Together with equation 29 and 30, we have:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t)
)

︸ ︷︷ ︸
Term 1

= P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
︸ ︷︷ ︸

Term 2

(31)

By Lemma 9, given s
(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t), Term 1 equals to:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t)
)

= P

(
s
(t+k+1)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , . . . , s
(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t)
)

Term 2 can be written as:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
=

∑
s′(t)∈S

∑
x
′(t)

s
′(t)∈X

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), x

′(t)

s′(t)
, s
′(t)

)

· P
(
x
′(t)

s′(t)
, s
′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
(32)

By Lemma 10, given s
(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), x

′(t)

s′(t)
, s
′(t), we have:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), x

′(t)

s′(t)
, s
′(t)

)
= P

(
s
(t+k+1)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), x

′(t)

s′(t)
, s
′(t)

)

=

P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t)

s′(t)
, s
′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
P

(
x
′(t)

s′(t)
, s′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s(t+1)

) (33)

Replace P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), x

′(t)

s′(t)
, s
′(t)

)
in equa-
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tion 32 with 33:

P

(
s
(t+k+1)

x(t+k),s(t+k)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)

=
∑

s′(t)∈S

∑
x
′(t)

s
′(t)∈X

P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t)

s′(t)
, s
′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
P

(
x
′(t)

s′(t)
, s′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s(t+1)

)
· P
(
x
′(t)

s′(t)
, s
′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
=

∑
s′(t)∈S

∑
x
′(t)

s
′(t)∈X

P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t)

s′(t)
, s
′(t) | s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)

= P

(
s
(t+k+1)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1)

)
Together with equation 31, we have that:

P (s
(t+k+1)

x([t,t+k]) |s(t+k)x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , . . . , s

(t)) = P (s
(t+k+1)

x([t+1,t+k]) |s(t+k)x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1))

Lemma 1 (Proof). P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , s(t)
)

can be written as:

P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , s(t)
)

=
∑

s∈Sk−2+1

P

(
yt+k
x([t,t+k]) | s(t+k)x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+1)

x(t) , s(t)
)∣∣∣∣

x([t+1,t+k])=π

· P
(
s
(t+k)

x([t,t+k−1]) | s(t+k−1)x([t,t+k−2]) , . . . , s
(t+1)

x(t) , s(t)
)

· P
(
s
(t+k−1)
x([t,t+k−2]) | s(t+k−2)x([t,t+k−3]) , . . . , s

(t+1)

x(t) , s(t)
)

...

P

(
st+2
x([t,t+1]) | s(t+1)

x(t) , s(t)
)

where s is defined as a sequence s
(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , . . . , s

t+2
x([t,t+1]) . By Lemma 11, we

have that:

P

(
yt+k
x([t,t+k]) | s(t+k)x([t,t+k−1]) , s

(t+k−1)
x([t,t+k−2]) , . . . , s

(t+1)

x(t) , s(t)
)

= P

(
yt+k
x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1)

)
By Lemma 11, for any ∀k ∈ Z+:

P

(
s
(t+k)

x([t,t+k−1]) | s(t+k−1)x([t,t+k−2]) , . . . , s
(t+1)

x(t) , s(t)
)

= P

(
s
(t+k)

x([t+1,t+k−1]) | s(t+k−1)x([t+1,t+k−2]) , . . . , s
(t+1)

)
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We then have that:

P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , s(t)
)

=
∑

s∈Sk−2+1

P

(
yt+k
x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , s

(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1)

)∣∣∣∣
x([t+1,t+k])=π

· P
(
s
(t+k)

x([t+1,t+k−1]) | s(t+k−1)x([t+1,t+k−2]) , . . . , s
(t+1)

)
· P
(
s
(t+k−1)
x([t+1,t+k−2]) | s(t+k−2)x([t+1,t+k−3]) , . . . , s

(t+1)

)
...

P

(
st+2
x(t+1) | s(t+1)

)
= P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1)

)
which proves the statement.

Theorem 1 (Proof). We first expand V π(s(t)) as

V π(s(t)) = E
[
Y

(t)

x(t)=π
+

∞∑
k=1

γt+kY
(t+k)

x([t,t+k])=π
| s(t)

]

= E
[
Y

(t)

x(t)=π
| s(t)

]
+ γ

∑
s(t+1)∈S

P (s
(t+1)

x(t)=π
| s(t))

∞∑
k=1

γt+kE
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t)=π
, s(t)

]
(34)

We can re-write the first factor of Eq. 34 as

E
[
Y

(t)

x(t)=π
| s(t)] =

∑
y(t)∈Y

y(t)P

(
y
(t)

x(t)=π
| s(t)

)

=
∑
y(t)∈Y

y(t)P

(
y
(t)

x(t) | s(t)
)∣∣∣∣

x(t)=π

(35)

= E
[
Y

(t)

x(t) | s(t)
]∣∣∣∣
x(t)=π

(36)

Eq. 35 follows from Lemma 3, since x(t) = π(s(t)) and s(t) is fixed. For similar reason, the
second factor of Eq. 34 can be written as

P

(
s
(t+1)

x(t)=π
| s(t)

)
= P

(
s
(t+1)

x(t) | s(t)
)∣∣∣∣

x(t)=π

(37)

Further, the third factor of Eq. 34 can be written as

E
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t) , s(t)
]

=

=
∑

y(t+k)∈Y

y(t+k)P

(
Y

(t+k)

x([t,t+k])=π
= y(t+k) | s(t+1)

x(t)=π
, s(t)

)

=
∑

y(t+k)∈Y

y(t+k)P

(
Y

(t+k)

x(t),x([t+1,t+k])=π
= y(t+k) | s(t+1)

x(t) , s(t)
)∣∣∣∣

x(t)=π
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The last step follows from Lemma 3. By Lemma 1, we then have

E
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t)=π
, s(t)

]
=

∑
y(t+k)∈Y

y(t+k)P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , s(t)
)∣∣∣∣

x(t)=π

=
∑

y(t+k)∈Y

y(t+k)P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1)

)∣∣∣∣
x(t)=π

By Lemma 1

=
∑

y(t+k)∈Y

y(t+k)P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1)

)
Y (t) is now independent of x(t).

= E
[
Y

(t+k)

x[t+1,t+k]=π
| s(t+1)

]
(38)

We then have substituting Eqs. 36, 37 and 38 back into Eq. 34,

V π(s(t)) = E
[
Y

(t)

x(t)=π
| s(t)

]
+ γ

∑
s(t+1)∈S

P

(
s
(t+1)

x(t)=π
| s(t)

) ∞∑
k=1

γt+kE
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t) , s(t)
]

= E
[
Y

(t)

x(t) | s(t)
]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

P

(
s
(t+1)

x(t) | s(t)
)∣∣∣∣

x(t)=π

∞∑
k=1

γt+kE
[
Y

(t+k)

x([t+1,t+k])=π
| s(t+1)

]

= E
[
Y

(t)

x(t) | s(t)
]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

P

(
s
(t+1)

x(t) | s(t)
)∣∣∣∣

x(t)=π

E
[ ∞∑
k=1

γt+kY
(t+k)

x([t+1,t+k])=π
| s(t+1)

]

= E
[
Y

(t)

x(t) | s(t)
]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

P

(
s
(t+1)

x(t) | s(t)
)∣∣∣∣

x(t)=π

V π(s(t+1))

Similarly, we can expand Qπ(s(t), x(t)) as

Qπ(s(t), x(t)) = E
[
Y

(t)

x(t) | s(t)
]

+ γ
∑

s(t+1)∈S

P (s
(t+1)

x(t) | s(t))
∞∑
k=1

γt+kE
[
Y

(t+k)

x(t),x([t+1,t+k])=π
| s(t+1)

x(t) , s(t)
]

= E
[
Y

(t)

x(t) | s(t)
]

+ γ
∑

s(t+1)∈S

P

(
s
(t+1)

x(t) | s(t)
)
E
[ ∞∑
k=1

γt+kY
(t+k)

x([t+1,t+k])=π
| s(t+1)

]

= E
[
Y

(t)

x(t) | s(t)
]

+ γ
∑

s(t+1)∈S

P

(
s
(t+1)

x(t) | s(t)
)
V π(s(t+1))

Theorem 2 (Proof). For any policy f ∈ Fexp which is function from S to X, f is also
a function from S × X to X. We must have f ∈ Fctf . This means that Fexp ⊆ Fctf and
π∗exp ∈ Fctf .

Since for any state s(t) and intuition x′(t), π∗ctf = arg maxπ∈Fctf V
π(s(t), x′(t)), we have
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V π
∗
exp(s(t), x′(t)) ≤ V π∗ctf (s(t), x′(t)). For V π

∗
exp(s(t)), we have

V π
∗
exp(s[t]) = E

[ ∞∑
k=0

γkY
(t+k)

x([t,t+k])=π∗exp
| s(t)

]

=
∑

x′(t)∈X

P (x′(t)|s(t))E
[ ∞∑
k=0

γkY
(t+k)

x([t,t+k])=π∗exp
| s(t), x′(t)]

=
∑

x′(t)∈X

P (x′(t)|s(t))V π∗exp(s(t), x′(t))

≤
∑

x′[t]∈X

P (x′(t)|s(t))V π∗ctf (s(t), x′(t))

= V π
∗
ctf (s(t))

We will show that the equality does not always hold by constructing a counterexample.
Consider a simple MDPUC with St ∈ {0}, Xt ∈ {0, 1} and Ut ∈ {0, 1}. The reward Yt is
defined by function f(Xt, Ut) = xt⊕ut. At each round, the agent always receives an intuition
xt = ¬ut. Ut is a uniform random variable, which means P (Ut = 1) = P (Ut = 0) = 1

2 . The
transition function is defined as St+1 = Xt. Let discount factor γ = 0.5.

With this MDP instance, for all state based policies π ∈ Fexp, starting from any state
st ∈ {0}, the expected return is always 0.5/(1− 0.5) = 1. While for intuition based policy,
let x′t = π∗ctf (st, xt) = ¬xt. The expected return for π∗ctf starting from any state st ∈ {0, 1}
equals to 1/(1− 0.5) = 2. Therefore, the optimal value function for state based policy and
intuition based policy are not always the same. The optimal intuition based policy is also
optimal in terms of state based value function.

Lemma 12. For a MDPUC model M = 〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t), for
any ∀s(t+k) ∈ S, x([t+i,t+j]) ∈ Xj−i+1, i, j, k ∈ Z, k > j and k ≥ 1, the following statement
must hold:

S
(t+k)

x([t+i,t+j]) = s(t+k) ⇒ X
(t+k)

s(t+k)
= X

(t+k)

x([t+i,t+j])

Proof. This can be easily proved by exclusion restrictions and composition. For any ∀x(t+k) ∈
X, we have that:

S
(t+k)

x([t+i,t+j]) = s(t+k), X
(t+k)

s(t+k)
= x(t+k)

⇒ S
(t+k)

x([t+i,t+j]) = s(t+k), X
(t+k)

x([t+i,t+j]),s(t+k)
= x(t+k) By exclusion restrictions

⇒ S
(t+k)

x([t+i,t+j]) = s(t+k), X
(t+k)

x([t+i,t+j]) = x(t+k) By composition

The last step implies that:

X
(t+k)

s(t+k)
= X

(t+k)

x([t+i,t+j]) = x(t+k)

Lemma 13. For a MDPUC model M = 〈γ, U,X, Y, S, F, P (u)〉, starting from state S(t),
for any ∀y(t+k) ∈ Y,∀s(t), . . . , s(t+k) ∈ S, x(t), x

′(t), . . . , x(t+k), x
′(t+k) ∈ X, k ∈ Z+, the
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following statements holds:

P

(
s
(t+k+1)

x([t,t+k]) , x
′(t+k+1)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)
= P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , x

′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)
(39)

P

(
y
(t+k)

x([t,t+k]) , x
′(t+k)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)
= P

(
y
(t+k)

x([t+1,t+k]) , x
′(t+k)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , x

′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)
(40)

Proof. We will only prove for Equation 39, since the proof for Equation 40 follows very
similar steps.

By Lemma 6, for any ∀y(t), . . . , y(t+k) ∈ Y , we have that:(
s
(t+k+2)

x(t+k+1),s(t+k+1) , y
(t+k+1)

x(t+k+1),s(t+k+1) , x
′(t+k+1)

s(t+k+1) ⊥⊥ s
(t+k+1)

x(t+k),s(t+k)
, y

(t+k)

x(t+k),s(t+k)
, x
′(t+k)

s(t+k)
, . . . , s

(t+1)

x(t),s(t)
, y

(t)

x(t),s(t)
, x
′(t)

s(t)
, s(t)

)
⇒
(
s
(t+k+2)

x(t+k+1),s(t+k+1) , y
(t+k+1)

x(t+k+1),s(t+k+1) , x
′(t+k+1)

s(t+k+1) ⊥⊥ s
(t+k)

x(t+k−1),s(t+k−1) , y
(t+k−1)

x(t+k−1),s(t+k−1) , x
′(t+k−1)

s(t+k−1) . . . , y
(t)

x(t),s(t)
, x
′(t)

s(t)
, s(t)

| s(t+k+1)

x(t+k),s(t+k)
, y

(t+k)

x(t+k),s(t+k)
, x
′(t+k)

s(t+k)

)
By weak union (41)

and(
s
(t+k+1)

x(t+k),s(t+k)
, y

(t+k)

x(t+k),s(t+k)
, x
′(t+k)

s(t+k)
⊥⊥ s(t+k)

x(t+k−1),s(t+k−1) , y
(t+k−1)
x(t+k−1),s(t+k−1) , x

′(t+k−1)
s(t+k−1) . . . , y

(t)

x(t),s(t)
, x
′(t)

s(t)
, s(t)

)
(42)

With independence relations 41 and 42, by contraction and decomposition graphoid axioms,
we have that:(
s
(t+k+2)

x(t+k+1),s(t+k+1) , y
(t+k+1)

x(t+k+1),s(t+k+1) , x
′(t+k+1)

s(t+k+1) , s
(t+k+1)

x(t+k),s(t+k)
, y

(t+k)

x(t+k),s(t+k)
, x
′(t+k)

s(t+k)
⊥⊥

s
(t+k)

x(t+k−1),s(t+k−1) , y
(t+k−1)

x(t+k−1),s(t+k−1) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1)

x(t),s(t)
, y

(t)

x(t),s(t)
, s(t), x

′(t)

s(t)

)
⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t+k)

x(t+k−1),s(t+k−1) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1)

x(t),s(t)
, s(t), x

′(t)

s(t)

)
By decomposition

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t+k)

x([t,t+k−1]),s([t,t+k−1]) , s
(t+k−1)

x([t,t+k−1]),s([t,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t)

x([t,t+k−1]) , x
′(t)

s(t)

)
by exclusion restrictions

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1)

x(t)
, x
′(t+1)

s(t+1) , s
(t), x

′(t)

s(t)

)
By Lemma 7

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t), x

′(t)

s(t)
| s(t+k)
x([t,t+k−1]) , s

(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1)

x(t)
, x
′(t+1)

s(t+1)

)
by weak union

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) ⊥⊥ s
(t), x

′(t)

s(t)
| s(t+k)
x([t,t+k−1]) , x

′(t+k)

s(t+k)
, s

(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1)

x(t)
, x
′(t+1)

s(t+1)

)
by weak union

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) ⊥⊥ s
(t), x

′(t)

s(t)
| s(t+k)
x([t,t+k−1]) , x

′(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

x([t,t+k−2]) , . . . , s
(t+1)

x(t)
, x
′(t+1)

x(t)

)
(43)

by Lemma 12
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Let x
′(t) = x(t), we have that:(

s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t+k)

x([t,t+k−1]),s([t,t+k−1]) , s
(t+k−1)

x([t,t+k−1]),s([t,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t)

x([t,t+k−1]) , x
(t)

s(t)

)
⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1), x

′(t+1)

s(t+1) , s
(t), x

(t)

s(t)

)
By Lemma 8

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) , x
′(t+k)

s(t+k)
⊥⊥ s(t), x(t)

s(t)
| s(t+k)
x([t+1,t+k−1]) , s

(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1), x

′(t+1)

s(t+1)

)
by weak union

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) ⊥⊥ s
(t), x

(t)

s(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

s(t+k)
, s

(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

s(t+k−1) , . . . , s
(t+1), x

′(t+1)

s(t+1)

)
by weak union

⇒
(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) ⊥⊥ s
(t), x

(t)

s(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1), x

′(t+1)

)
(44)

by Lemma 12

By the independence relation 43, we have that:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

x([t,t+k−2]) , . . . , s
(t+1)

x(t)
, x
′(t+1)

x(t)
, s(t), x

′(t)
)

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

x([t,t+k−2]) , . . . , s
(t+1)

x(t)
, x
′(t+1)

x(t)
, s(t), x

′(t)

s(t)

)
By composition

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

x([t,t+k−2]) , . . . , s
(t+1)

x(t)
, x
′(t+1)

x(t)

)
(45)

Similarly, by the independence relation 44, we have that:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1), x

′(t+1), s(t), x(t)
)

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1), x

′(t+1), s(t), x
(t)

s(t)

)
By composition

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1), x

′(t+1)

)
(46)

Based on equation 45 and 46, let x
′(t) = x(t), we have:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1), x

′(t+1)

)
= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

x([t+1,t+k−2]) , . . . , s
(t+1), x

′(t+1), s(t), x(t)
)

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

s(t+k)
, s

(t+k−1)

x([t+1,t+k−2]) , x
′(t+k−1)

s(t+k)
, . . . , s(t+1), x

′(t+1)

s(t+1) , s
(t), x

(t)

s(t)

)
By Lemma 12

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]),s([t,t+k−1]) , x
′(t+k)

s(t+k)
, . . . , s

(t+1)

x([t,t+k−1]),s(t)
, x
′(t+1)

s(t+1) , s
(t)

x([t,t+k−1]) , x
(t)

s(t)

)
By Lemma 8

35



= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]) , x
′(t+k)

s(t+k)
, s

(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

s(t+k)
, . . . , s

(t+1)

x(t)
, x
′(t+1)

s(t+1) , s
(t), x

(t)

s(t)

)
By Lemma 7

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

x([t,t+k−2]) , . . . , s
(t+1)

x(t)
, x
′(t+1)

x(t)
, s(t), x(t)

)
By Lemma 12

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)

x([t,t+k−2]) , x
′(t+k−1)

x([t,t+k−2]) , . . . , s
(t+1)

x(t)
, x
′(t+1)

x(t)

)
Together with equation 45 and 46, this implies that, for any ∀x′(t) ∈ X:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
︸ ︷︷ ︸

Term 1

= P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , x

′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)
︸ ︷︷ ︸

Term 2

(47)

By Lemma 9, given s
(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) , s
(t+1)

x(t) , s(t), Term 1 equals to:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
= P

(
s
(t+k+1)

x([t,t+k]) , x
′(t+k+1)

s(t+k+1) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
= P

(
s
(t+k+1)

x([t,t+k]) , x
′(t+k+1)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
By Lemma 12

Term 2 can be written as:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , x

′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)
=

∑
s′(t)∈S

∑
x
′(t)

s
′(t)∈X

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1), s
′(t), x

′(t)

s′(t)

)

· P
(
s
′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)
(48)

By Lemma 10, given s
(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+2)

x(t+1) , s
(t+1), x

′(t)

s′(t)
, s
′(t), we have:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1), s
′(t), x

′(t)

s′(t)

)
= P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1), s
′(t), x

′(t)

s′(t)

)
= P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1), s
′(t), x

′(t)

s′(t)

)
By Lemma 12

=

P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) , s
′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)
P

(
s′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s(t+1), x′(t+1)

)
(49)
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Replace P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1), s
′(t), x

′(t)

s′(t)

)
in equation 48 with 49:

P

(
s
(t+k+1)

x(t+k),s(t+k)
, x
′(t+k+1)

s(t+k+1) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , x

′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)

=
∑

s′(t)∈S

∑
x
′(t)

s
′(t)∈X

P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) , s
′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)
P

(
s′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s(t+1), x′(t+1)

)
· P
(
s
′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1), s
′(t), x

′(t)

s′(t)

)
=

∑
s′(t)∈S

∑
x
′(t)

s
′(t)∈X

P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) , s
′(t), x

′(t)

s′(t)
| s(t+k)
x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)

= P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)
Together with equation 47, we have that:

P

(
s
(t+k+1)

x([t,t+k]) , x
′(t+k+1)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)
= P

(
s
(t+k+1)

x([t+1,t+k]) , x
′(t+k+1)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , s
(t+k−1)
x([t+1,t+k−2]) , x

′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)

Lemma 2 (Proof). P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
can be writ-

ten as:

P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
=

∑
s∈Sk−2+1

∑
x′∈Xk−2+1

P

(
y
(t+k)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)∣∣∣∣
x([t+1,t+k])=π

· P
(
s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) | s(t+k−1)x([t,t+k−2]) , x
′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)
· P
(
s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) | s(t+k−2)x([t,t+k−3]) , x

′(t+k−2)
x([t,t+k−3]) , . . . , s

(t), x
′(t)

)
...

P

(
s
(t+2)

x([t,t+1]) , x
′(t+2)

x([t,t+1]) | s(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
where s is defined as a sequence s

(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , . . . , s

(t+2)

x([t,t+1]) and x′ a sequence
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x
′(t+k)

x([t,t+k−1]) , x
′(t+k−1)
x([t,t+k−2]) , . . . , x

′(t+2)

x([t,t+1]) . By Lemma 13, we have that:

P

(
y
(t+k)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)
∑

x
′(t+k)
x([t,t+k])

∈X

P

(
y
(t+k)

x([t,t+k]) , x
′(t+k)

x([t,t+k]) | s(t+k)x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) , . . . , s
(t), x

′(t)

)
∑

x
′(t+k)
x([t,t+k])

∈X

P

(
y
(t+k)

x([t+1,t+k]) , x
′(t+k)

x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)

= P

(
yt+k
x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)
By Lemma 13, for any ∀k ∈ Z+:

P

(
s
(t+k)

x([t,t+k−1]) , x
′(t+k)

x([t,t+k−1]) | s(t+k−1)x([t,t+k−2]) , x
′(t+k−1)
x([t,t+k−2]) , . . . , s

(t), x
′(t)

)
= P

(
s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) | s(t+k−1)x([t+1,t+k−2]) , x
′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)
We then have that:

P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , x
′(t+1)

x(t) , s(t), x
′(t)

)
=

∑
s∈Sk−2+1

∑
x′∈Xk−2+1

P

(
yt+k
x([t+1,t+k]) | s(t+k)x([t+1,t+k−1]) , x

′(t+k)

x([t+1,t+k−1]) , . . . , s
(t+1), x

′(t+1)

)∣∣∣∣
x([t+1,t+k])=π

· P
(
s
(t+k)

x([t+1,t+k−1]) , x
′(t+k)

x([t+1,t+k−1]) | s(t+k−1)x([t+1,t+k−2]) , x
′(t+k−1)
x([t+1,t+k−2]) , . . . , s

(t+1), x
′(t+1)

)
· P
(
s
(t+k−1)
x([t,t+k−2]) , x

′(t+k−1)
x([t,t+k−2]) | s(t+k−2)x([t+1,t+k−3]) , x

′(t+k−2)
x([t+1,t+k−3]) , . . . , s

(t+1), x
′(t+1)

)
...

P

(
s
(t+2)

x([t,t+1]) , x
′(t+2)

x([t,t+1]) | s(t+1), x
′(t+1)

)
= P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1), x
′(t+1)

)
which proves the statement.

Theorem 3 (Proof). We first expand V π(s(t), x′(t)) as

V π(s(t), x′(t)) = E
[
Y

(t)

x(t)=π
+

∞∑
k=1

γt+kY
(t+k)

x([t,t+k])=π
| s(t), x′(t)

]
= E

[
Y

(t)

x(t)=π
| s(t), x′(t)

]
+ γ

∑
s(t+1)∈S

∑
xt+1∈X

P (s
(t+1)

x(t)=π
, x

(t+1)

x(t)=π
| s(t), x′(t))

·
∞∑
k=1

γt+kE
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t)=π
, x

(t+1)

x(t)=π
, s(t), x′(t)

]
(50)
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E
[
Y

(t)

x(t)=π
| s(t), x′(t)

]
equals to

E
[
Y

(t)

x(t)=π
| s(t), x′(t)

]
=
∑
y(t)∈Y

y(t)P

(
y
(t)

x(t)=π
| s(t), x′(t)

)

=
∑
y(t)∈Y

y(t)P

(
y
(t)

x(t) | s(t), x′(t)
)∣∣∣∣

x(t)=π

(51)

= E
[
Y

(t)

x(t) | s(t), x′(t)
]∣∣∣∣
x(t)=π

(52)

Eqs. 51 follows from Lemma 3, since x(t) = π(s(t), x′(t)) and s(t), x′(t) are fixed. Similarly,

for P

(
s
(t+1)

x(t)=π
, x

(t+1)

x(t)=π
| s(t), x′(t)

)
, we have

P

(
s
(t+1)

x(t)=π
, x

(t+1)

x(t)=π
| s(t), x′(t)

)
= P

(
s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)
)∣∣∣∣

x(t)=π

(53)

E
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t)=π
, x

(t+1)

x(t)=π
, s(t), x′(t)

]
is equivalent to

E
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t)=π
, x

(t+1)

x(t)=π
, s(t), x′(t)

]
=

∑
y(t+k)∈Y

y(t+k)P

(
Y

(t+k)

x([t,t+k])=π
= y(t+k) | s(t+1)

x(t)=π
, x

(t+1)

x(t)=π
, s(t), x′(t)

)

=
∑

y(t+k)∈Y

y(t+k)P

(
Y

(t+k)

x(t),x([t+1,t+k])=π
= y(t+k) | s(t+1)

x(t) , x
(t+1)

x(t)

)∣∣∣∣
x[t]=π

By Lemma 2, we have that:

E
[
Y

(t+k)

x([t,t+k])=π
| s(t+1)

x(t)=π
, x

(t+1)

x(t)=π
, s(t), x′(t)

]
=

∑
y(t+k)∈Y

y(t+k)P

(
Y t+k
x(t),x([t+1,t+k])=π

= y(t+k) | s(t+1)

x(t) , x
(t+1)

x(t) , s(t), x′(t)
)∣∣∣∣

x(t)=π

=
∑

y(t+k)∈Y

y(t+k)P

(
Y t+k
x([t+1,t+k])=π

= y(t+k) | s(t+1), x
′(t+1)

)

= E
[
Y

(t+k)

x([t+1,t+k])=π
| s(t+1), x

′(t+1)

]
(54)

39



Now, substituting Eqs. 52, 53 and 54 back in Eq. 50, we have

V π(s(t)) = E
[
Y

(t)

x(t)=π
| s(t), x′(t)

]
+ γ

∑
s(t+1)∈S

∑
xt+1∈X

P (s
(t+1)

x(t)=π
, x

(t+1)

x(t)=π
| s(t), x′(t))

·
∞∑
k=1

γt+kE
[
Y

(t+k)

x[t,t+k]=π
| s(t+1)

x(t)=π
, x

(t+1)

x(t)=π
, s(t), x′(t)

]
= E

[
Y

(t)

x(t) | s(t), x′(t)
]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

∑
xt+1∈X

P

(
s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)
)∣∣∣∣

x(t)=π

·
∞∑
k=1

γt+kE
[
Y

(t+k)

x([t+1,t+k])=π
| s(t+1), x(t+1)

]
= E

[
Y

(t)

x(t) | s(t), x′(t)
]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

∑
xt+1∈X

P

(
s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)
)∣∣∣∣

x(t)=π

· E
[ ∞∑
k=1

γt+kY
(t+k)

x([t+1,t+k])=π
| s(t+1), x(t+1)

]
= E

[
Y

(t)

x(t) | s(t), x′(t)
]∣∣∣∣
x(t)=π

+ γ
∑

s(t+1)∈S

∑
xt+1∈X

P

(
s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)
)∣∣∣∣

x(t)=π

V π(s(t+1), x(t+1))

Similarly, we can expand Qπ(s(t), x′(t)) as

Qπ(s(t), x′(t)) =

= E
[
Y

(t)

x(t) | s(t), x′(t)
]

+ γ
∑

s(t+1)∈S

∑
xt+1∈X

P (s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t))

·
∞∑
k=1

γt+kE
[
Y

(t+k)

x(t),x([t+1,t+k])=π
| s(t+1)

x(t) , x
(t+1)

x(t) , s(t), x′(t)
]

= E
[
Y

(t)

x(t) | s(t), x′(t)
]

+ γ
∑

s(t+1)∈S

∑
xt+1∈X

P

(
s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)
)

· E
[ ∞∑
k=1

γt+kY
(t+k)

x([t+1,t+k])=π
| s(t+1), x(t+1)

]
= E

[
Y

(t)

x(t) | s(t), x′(t)
]

+ γ
∑

s(t+1)∈S

∑
xt+1∈X

P

(
s
(t+1)

x(t) , x
(t+1)

x(t) | s(t), x′(t)
)
V π(s(t+1), x(t+1))
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