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The following is a revision of some results presented in [1]. Section, definition,
theorem and lemma numbers match the manuscript in mention. Changes are
highlighted in red. I thank Professors Juan D. Correa and Sanghack Lee for
raising some of the issues discussed here and helping to fix them. An updated
and more general version of some of these results appeared in [2, 3].

4 Transportability from Multiple Studies with
Limited Experiments

4.1 Characterizing mz-Transportable Relations

The following is a revised definition of mz∗-shedge, a graphical structure that
witnesses the non-transportability of a causal distribution. The removal of con-
dition 3 of the original definition is not strictly needed but since it’s entailed by
conditions 1 and 2, we prefer to phrase in this way for the sake of clarity.

Definition 18 (mz∗-shedge). Let D = (D(1), . . . , D(n)) be a collection of selec-
tion diagrams relative to source domains Π = (π1, . . . , πn) and target domain π∗,
respectively, Si represents the collection of S-variables in the selection diagram
D(i), and let D(∗) be the causal diagram of π∗. Let {⟨P i, Iiz⟩} be the collec-
tion of pairs of observational and interventional distributions of {πi}, where
Iiz =

⋃
Z′⊆Zi

P i(v|do(z′)), and in an analogous manner, ⟨P ∗, I∗z ⟩ be the obser-
vational and interventional distributions of π∗, for Zi the set of experimental
variables in πi. Consider a pair of R-rooted C-forestscomponents F = ⟨F, F ′⟩
such that F ′ ⊂ F , F ′ ∩ X = ∅, F ∩ X ̸= ∅, and R ⊆ An(Y)GX

(called
hedge). We say that the induced a collection of pairs of R-rooted C-forests
over each diagram, ⟨F (∗),F (1), . . . ,F (n)⟩, with F (i) =

〈
F (i), F ′(i)〉, F (i) ⊆ F ,

i = {∗, 1, . . . , n},
⋃

i F
′(i) = F ′, is an mz∗-shedge for P ∗

x (y) relative to experi-
ments (I∗z , I

1
z , . . . , I

n
z ) if they are all hedges for Px(y), and one of the following

conditions hold for each domain πi, i = {∗, 1, . . . , n}:
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1. There exists at least one variable of Si pointing to the induced diagram
F ′(i), or

2. (F (i) \ F ′(i)) ∩ Zi is an empty set.

3. The collection of pairs of C-forests induced over diagrams, ⟨F (∗),F (1), . . . , F (i) \ Z∗
i , . . . ,F (n)⟩,

is also an mz-shedge relative to (I∗z , I
1
z , . . . , I

i
z\z∗

i
, . . . , Inz ), where Z

∗
i = (F (i) \ F ′(i)) ∩ Zi.

We call mz∗-shedge the mz-shedge in which there exist one directed path from
R \ (R ∩De(X)F ) to (R ∩De(X)F ) not passing through X.

With a revised definition, we provide a new proof for Theorem 17 and related
Lemmas 17, 18 and 19.

Theorem 17. Let D = {D(1), . . . , D(n)} be a collection of selection diagrams
relative to source domains Π = {π1, . . . , πn}, and target domain π∗, respectively,
and {Iiz}, for i = {∗, 1, . . . , n} defined appropriately. If there is an mz∗-shedge
for the effect R = P ∗

x (y) relative to experiments (I∗z , I
1
z , . . . , I

n
z ) in D, R is not

mz-transportable from Π to π∗ in D (relative to all experiments Iiz).

Proof sketch. Let F be the R-rooted C-component (basis). Without loss of
generality, we will consider a structure with a maximal root-set. That is, one
that when subjected to the following procedure remains unchanged:

1. let B = An(Y)GX
∩ (F \X),

2. consider the subgraph F \X and let R′ be the set of variables in B that
are also in the same C-component as any element of R in that subgraph.

3. Then, remove from F the edges outgoing from R′ and let R = R ∪R′.

After the previous steps, we obtain a new mz∗-shedge with a maximal root-
set, where the variables in F ′ are exactly those in the root-set R. To witness,
assume for the sake of contradiction there exists a variable V in F ′ not in R,
by definition F ′ is an R-rooted C-component containing no variables in X, and
since V belongs to F ′ it must fall into B in step one and also satisfied step two.
Hence, V can be added to the root-set as in step three, contradicting the fact
that F had maximal root-set.

Let T = F \R be the observable variables in F that are not in R. Let U′

be the set of unobservable variables in F and partition it into the sets:

• UT = {U ∈ U′ | T1 ← U → T2 and T1, T2 ∈ T},

• UR = {U ∈ U′ | R1 ← U → R2 and R1, R2 ∈ R}, and

• U× = {U ∈ U′ | T ← U → R and T ∈ T, R ∈ R}.

Let Ui
T = UT ∩ F (i),Ui

R = UR ∩ F (i) and Ui
× = U× ∩ F (i).

We construct two causal models M1 and M2 that will agree on the col-
lection of distributions {⟨P i, Iiz⟩}, ⟨P ∗, I∗z ⟩, but disagree on the interventional
distribution P ∗

x (y).
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Let kt be the number of F (i)s in which a variable T ∈ T appears. Then,
we will parametrize T as a kt-bit variable with T[i] representing the bit in T

corresponding to F (i). Similarly, define ku for U ∈ UT∪U×, then U is a ku-bit
variable where U[i] stands for the bit associated with F (i).

Call W the set of variables pointed by S-nodes in F ′ and consider the
following encoding for the domains: let Si be the index variable corresponding
to the source domain πi ∈ Π, and let the tuple ⟨S1 = 0, . . . , Si = 1, . . . , Sn = 0⟩
represent the index for the functional model relative to this domain. Let the
tuple ⟨S1 = 0, S2 = 0, . . . , Sn = 0⟩ represent the index for functional model
relative to the target domain π∗.

Let Pav stand for the set of observable and unobservable parents of variable
V in F and Paiv for the set of parents of the same variable in F (i). For a set of
variables V, let Pav =

⋃
V ∈V Pav and Paiv =

⋃
V ∈V Paiv.

In both models, let each bit T[i] of T ∈ T be governed by the function

ft[i] =
⊕

A∈Pai
t

A[i]. (1)

Variables in R∪UR are binary. Pick an arbitrary variable R∗ ∈ R. For any
R ∈ R \W in model 1 and 2 except for R∗ in model 2, let

fr =

 ∧
πi∈Π,T∈Pai

r∩T

gi(T ) ∧
∧

πi∈Π,U∈Pai
r∩U×

U[i]

 ∧( ⊕
U∈Par∩UR

U

)
; (2)

where gi(.) is defined as follows:

gi(T ) =


T[i] if |Pair ∩T| is odd and |Ui

×| is odd, or
if |Pair ∩T| is even and |Ui

×| is even and T = T (i).

T[i] otherwise.

(3)

Where T (i) is any variable chosen from the set Pair ∩T for each domain πi.
For R∗ in model 2:

fr∗ =

 ∧
T∈Pai

r∗∩T

gi(T ) ∧
∧

U∈Pai
r∗∩U×

U[i]

 ∧
 ⊕

U∈Par∗∩UR

U

. (4)

For R ∈ (R ∩W) let

R← fr ∧
∧

Si|(Si→R)∈D

Si, (5)

where fr is constructed as in the previous case and Si is an S-node pointing to
R, relative to domain πi.

Every bit of the U-variables is set to behave as a fair coin.
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Lemma 17. The two models M1 and M2 are compatible with the selection
diagrams D.

Proof. The result is immediate. Consider the functional model that generates
any domain πi, in both models M1 and M2. By construction, the index tuple is
set to ⟨S1 = 0, . . . , Si = 1, . . . , Sn = 0⟩ in πi, and ⟨S1 = 0, . . . , Si = 0, . . . , Sn =
0⟩ in π∗. So, it is obvious that in both models, the only structural differences
between πi and π∗ are the equations of W ∈W in which Si appears. □

Lemma 18. The two models agree in the distribution of P i(t, r), i = {∗, 1, . . . , n}
and there exists an assignment for X and Y such that P ∗

M1
(Y|do(X)) ̸= P ∗

M2
(Y|do(X)).

Proof. (Matching observational distributions)
First consider any particular domain πi and a particular assignment u of the
variables in U. We have that in both models the value of T has to be the same
since the functions are the same in those models (with fixed πi all Si have the
same value).

Let R0 be the set of nodes in R for which the expression in the first paren-
thesis of equation (2) evaluates to 0 in both models. Note that the set R0 is
determined by the variables in UT ∪U×, because those determine the values
of T, and the variables in UR only appear in the second part of equation (2)
which is not taken into account in the definition of R0. We will show that R0

is not empty in the context of the non-intervened models corresponding to πi.
Consider any U ∈ Ui

× such that U[i] = 0, then any R that is pointed by U will
have value 0 in both models due to the construction of fr, and we are done.
We continue with the situation where all such U have U[i] = 1. Consider the
quantity Ci defined as

Ci =
⊕

T∈Pai
r∩T

T[i], (6)

and note that due to the forestness of F (i) and the parametrization; Ci computes
the xor of all the unobservable variables in UT and U×, having those in UT

accounted twice. Together with the fact that for any U ∈ Ui
×, U[i] = 1, it

follows that

Ci =
⊕

U∈Ui
×

U[i] = |Ui
×| mod 2. (7)

Note that the set of parents of variables in R in T (i.e. Pair ∩ T) must be
non-empty for any given hedge, then consider each one of the following four
scenarios:

1. |Pair ∩T| is odd and |Ui
×| is odd: We have Ci = 1 which implies that at

least one of T[i] has to be 1. Since gi negates all T[i] in this case, we have
that at least one R (with T as a parent) will have 0 as value.

2. |Pair ∩T| is odd and |Ui
×| is even: We have Ci = 0 which implies that at

least one of T[i] has to be 0. Since gi leaves each T[i] the same, we have
that at least one R will have 0 as value.
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3. |Pair ∩T| is even and |Ui
×| is odd: We have Ci = 1 which implies that at

least one of T[i] has to be 0. As in the previous case gi leaves T[i] the same
so at least one R = 0 in both models.

4. |Pair∩T| is even and |Ui
×| is even: We have Ci = 0, so for all combinations

but for all T[i] = 1, there are always at least two T[i] = 0. Since gi negates
only one T[i], it follows that there is always at least one gi(T ) = 0 and any
R pointed by T will have value 0.

Due to the previous analysis we have that R0 is non-empty. Pick R̂ ∈ R0

that is closest to R∗ in terms of the length of the bidirected path p made of
edges in UR between them (the length of the path is 0 if R∗ ∈ R0. Make u1 = u
(the considered assignment) and u2 equal to u for all U except those in p for
which their negation is taken. By definition p intersects with R0 only at the
endpoints. Also, for every intermediate node R of p, there are two parents in
UR being negated; from the parametrization of fr we can tell that the value
of R remains the same because this change does not affect the parity being
computed by the xor. We have then that u1 corresponds to u2 and repeating
the reasoning for any other assignment of the u we get a bijective relationship
between assignments producing the same observation in both models, hence the
distributions over the observed variables is the same.

(Different interventional distribution)
For the second part of the claim, consider the distribution P (r|do(X = x̂)),
where x̂ is an assignment where each bit of X ∈ X is given by

x̂[i] =

{
0 if X ∈ F (i) and X /∈ Pair,

gi(1) if X ∈ Pair,
(8)

Start by noting when this intervention on X is performed, every F (i) is
affected (because by definition every F (i) intersects X). We want to show that
under this circumstance, there exists at least one assignment u such that R0

is empty. Start with an assignment where u× = 1, if every gi(T ) = 1 for
i = {∗, 1, . . . , n}, T ∈ Pair we are done. Otherwise, for every i, T such that
gi(T ) = 0 find a path p, in F (i), between T and a variable in An(X)F (i) (that
includes X) made of bidirected edges corresponding to variables in UT. Such
path must exists due to the fact that the mz∗-shedge under consideration has a
maximal root-set and T is in An(Y)GX

(because it is a parent of some R ∈ R).
We can flip the bit associated with πi for all us in p, which preserve the

parity (hence the bit value) of every intermediate observable, while the value of
the observable in the endpoint is either fixed by intervention (if the path ends
in some X ∈ X) or can change without affecting any variable in Pair \ {T} (and
hence R as well) because it is an ancestor of X that has been intervened and
F (i) is a forest. Changing the unobservables in the path also changes the parity
of T and since gi(T ) = gi(T ) we have that now gi(T ) = 1.

This process only affects bits associated with πi, by repeating it for every
other T , i such that gi(T ) = 0, we get an assignment where R0 is empty. Under
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these circumstances, the value of variables in R is determined by the xor in the
second parenthesis of equation (2) that depends only on variables in UR, that
free so far. Then, in M1 we have⊕

R∈R

R =
⊕
R∈R

⊕
U∈Par∩UR

U =
⊕

U∈UR

(U ⊕ U) = 0, (9)

since every U ∈ UR appears exactly twice. As for M2

⊕
R∈R

R =

 ⊕
R∈R,R ̸=R∗

⊕
U∈Par∩UR

U

⊕
 ⊕

U∈Par∗∩UR

U

 (10)

=

 ⊕
R∈R,R ̸=R∗

⊕
U∈Par∩UR

U

⊕
1⊕

⊕
U∈Par∗∩UR

U

 (11)

= 1⊕
⊕
R∈R

⊕
U∈Par∩UR

U (12)

= 1⊕

( ⊕
U∈UR

(U ⊕ U)

)
(13)

= 1. (14)

Then, from the first part of this proof we have that for any u for which R0 the
distributions both models produce the same observations, however, for the in-
tervention do(X = x̂) there are u for which R0 is empty and we have that model
2 produces more observations where

⊕
R = 1 hence the different observations

which implies P ∗
M1

(
⊕

r = 1|do(x̂)) ̸= P ∗
M2

(
⊕

r = 1|do(x̂)).

(Mapping R to Y)
By definition, there is a directed path in G from every R ∈ R to Y (could be
zero-length) not intersecting X. Augment M1 and M2 such that for any non-
zero-length path q from R to Y ∈ Y, each variable except for R let the function
be an xor of its parents. If the path contains an intermediate variable R′ ∈ R in
q add an extra bit to it, such that the original bit computes the original function
and the new one the xor of its parents.

In this new models
⊕

Y =
⊕

R, then the second part of the lemma follows.

Lemma 19. The two models agree in the collection of interventional distribu-
tions ({Iiz}) in the respective source domains πi, i = 1, . . . , n, and target domain
π∗.

Proof. Consider a domain πi and a set Z ⊆ Zi. From the definition of mz∗-
shedge we have that either condition 1 or 2 are true for F (i). In the former case
we have some indicator in Si pointing to a variable R ∈ R that will be set to
0 in both models in domain πi. In the latter case, and by the same argument
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used in the proof for lemma 18, we have that any variable R ∈ R that is a child
of a variable T ∈ T ∩ F (i) belongs to R0.

In any case R0 is not empty and as in the proof for lemma 18 this implies
that the observed distributions match in both models for the variables in F .
The mapping described in lemma 18 modifies both models in the same way and
may only change the functions of R by adding extra bits without changing the
fact that the observations match between distributions. □

6 Causal Inference by Surrogate Experiments

6.1 Characterizing zID Relations

Theorem 31. Let X, Y, Z be disjoint sets of variables and let G be the causal
diagram. The causal effect Q = P (y|do(x)) is zID in G if and only if one of
the following conditions hold:

a. Q is identifiable in G; or,

b. There is no hedge F = ⟨F, F ′⟩ for Q in G such that (F \ F ′) ∩ Z is empty.

(i) X intercepts all directed paths from Z′ to Y, and

(ii) Q is identifiable in GZ′ .6

Proof. (only if) Suppose there exists a hedge as described in condition b, Sup-
pose Q is not identifiable in G (condition a) and there is a hedge F as described
in condition b. Note that F satisfies the definition for mz∗-shedge, hence by
Theorem 17 it follows that Q is not identifiable from P (v), {Pz′(v|do(z′))}Z′⊆Z,
which equates to Q not being zID.

(if) Suppose Q is not zID, then it easy to see that Q is not identifiable from
P (v) (which is considered by zID) therefore condition a is not satisfied. Let
F = ⟨F, F ′⟩ be the hedge in G witnessing that some factor Q′ associated with
Q is not identifiable from P (v). Let Z′ = (F \ F ′) ∩ Z, if Z′ = ∅, condition
b does not hold and we are done. Otherwise, we can consider the distribution
P (v|do(z′)) associated with Gz′ where F cannot be a hedge (every variable in
Z′ belongs to a different C-component in that graph). Then, Q′ is identifiable
from P (v|do(z′)) and there has to be another Q′′ that is not identifiable from
P (v) else Q is zID. Let F ′ be the hedge associated with Q′′ and by repeating
the reasoning above, we have that either we end up with a hedge as forbidden
by condition b or a contradiction. Therefore, Q being not zID implies that
both conditions a and b are false; which entails the forward direction of this
theorem.

The corollary below followed from the original condition in Theorem 31.

3This condition can be rephrased graphically as “There exists no hedge for Q as an edge
subgraph in G

Z′ .”
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W

X

Z

Y

Figure 1: Graph in which P (y|do(x)) is not ID from P (v) and G, but it is zID
with experiments on Z, that is in De(X)GAn(Y )

.

Corollary 22. Let G be the causal diagram, X, Y ⊂ V be disjoint sets of
variables, and Z ⊆ De(X)GAn(Y)

. The causal effect Q = P (y|do(x)) is not zID
from P and do(Z) in G, if Q is not ID from P in G.

This corollary is not valid. To understand the subtlety with this statement,
consider the graph in Fig. 1 where the query to be z-identified is Q = P (y|do(x))
and the available distributions are P (v) and P (y, x, w|do(z)). According with
the corollary, if Q is not identifiable from G and P (v), it would not be identi-
fiable even with experiments on Z because {Z} ⊆ De(X)GAn(Y )

. However, the
following derivation follows:

P (y|do(x)) =
∑
z

P (y|do(x), z)P (z|do(x)) (15)

=
∑
z

P (y|do(x), do(z))P (z|do(x)) (16)

=
∑
z

P (y|do(z))P (z|do(x)) (17)

=
∑
z

P (y|do(z))
∑
w

P (z|do(x), w)P (w|do(x)) (18)

=
∑
z

P (y|do(z))
∑
w

P (z|x,w)P (w|do(x)) (19)

=
∑
z

P (y|do(z))
∑
w

P (z|x,w)P (w), (20)

that certifies that Q is zID. The key point missed in Corollary 22 is that if Q is
decomposable into more than one factor, some of them could be identified from
the observational distribution and others from experimental distributions, fact
that cannot be captured in a non-recursive condition.

6.2 A Complete Algorithm for zID
Below the algorithm IDz is reestated to make some recursive calls more explicit.
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function IDz(y,x,Z, I,J , P,G)
INPUT: x,y: value assignments; Z: variables with interventions available;
I,J : see caption; P : current probability distribution do(I,J , x) (observational
when I = J = ∅); G: causal graph.
OUTPUT: Expression for Px(y) in terms of P, Pz or FAIL(F, F ′).

1 if x = ∅, return
∑

v\y P (v).

2 if V \An(Y)G ̸= ∅,
return IDz(y,x ∩An(Y)G,Z,

I,J ,
∑

v\An(Y)G
P,An(Y)G).

3 Set Zw = ((V \ (X ∪ I ∪ J )) \An(Y)GX∪I∪J
) ∩ Z.

Set W = ((V \ (X ∪ I ∪ J )) \An(Y)GX∪I∪J
) \ Z.

if (Zw ∪W) ̸= ∅,
return IDz(y,x ∪w,Z \ Zw, I ∪ zw,J , PI,zw,J , G\Zw).

4 if C(G \ (X ∪ I ∪ J )) = {S0, S1, ..., Sk},
return

∑
v\{y,x,I}

∏
i ID

z(si, (v \ si) \ Z,
Z \ (V \ Si), I,J ∪ (Z ∩ (v \ si)), PI,J ,Z∩(V\Si), G\(Z ∩ (V\Si))).

if C(G \ (X ∪ I ∪ J )) = {S},
5 if C(G) = {G}, FAIL(G,S).
6 if S ∈ C(G),

return
∑

s\y
∏

i|Vi∈S P (vi|v(i−1)
G \ (I ∪ J )).

7 if (∃S′)S ⊂ S′ ∈ C(G),
return IDz(y,x ∩ S′, Z, I, J ,∏

i|Vi∈C′ P (Vi|V (i−1)
G ∩ S′, v

(i−1)
G \ (S′ ∪ I ∪ J )), S′).

Figure 2: IDz: Algorithm capable of recognizing zID; The variables I,J repre-
sent indices for currently active Z-interventions introduced respectively by steps
3 or 4. Note that P is sensitive to current instantiations of I,J .
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