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The load of a node in a network is the total traffic going through it when every node pair sustains a uniform
bidirectional traffic between them on shortest paths. We express nodal load in terms of the more elementary
notion of a node’s descents in breadth-first-search ��BFS� or shortest-path� trees and study both the descent and
nodal-load distributions in the case of scale-free networks. Our treatment is both semianalytical �combining a
generating-function formalism with simulation-derived BFS branching probabilities� and computational for the
descent distribution; it is exclusively computational in the case of the load distribution. Our main result is that
the load distribution, even though it can be disguised as a power law through subtle �but inappropriate� binning
of the raw data, is in fact a succession of sharply delineated probability peaks, each of which can be clearly
interpreted as a function of the underlying BFS descents. This find is in stark contrast with previously held
belief, based on which a power law of exponent −2.2 was conjectured to be valid regardless of the exponent of
the power-law distribution of node degrees.
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I. INTRODUCTION

In a scale-free network, node connectivities �or degrees�
are distributed according to a power law; that is, the prob-
ability that a randomly chosen node has degree k is propor-
tional to k−� for some ��1. Scale-free networks are therefore
strictly diverse from networks of the classic Erdős-Rényi
type �1�, in which node degrees are Poisson distributed. The
importance of scale-free networks in various natural, social,
and technological settings �the latter encompassing now
ubiquitous structures such as the Internet and the World Wide
Web� has motivated considerable research along several
fronts during the last decade. For the main results that have
been attained the reader is referred to Ref. �2� and to the
chapters in Refs. �3,4�.

Most of these research efforts have concentrated on either
extracting a scale-free network structure out of data on some
particular domain or the creation of mechanisms of network
evolution to function as generative models of such networks.
As a consequence, it seems fair to state that so far the great-
est thrust has been directed toward what may be called the
“syntactic” aspects of scale-free networks, as opposed to
their “semantic” �or “functional”� aspects, these being related
to the higher processes, either natural or artificial, that de-
pend on the underlying networks as a substrate. In the case of
computer networks, for example, this issue is illustrated by
the networks’ topological properties, on the one hand, and
their utilization �for end-to-end communication protocols,
data storage and retrieval, etc.�, on the other.

Still in the context of computer networks, exceptions to
the research trend just mentioned can be found in the works
reported in Refs. �5–7�, all concerned with the efficient, glo-
bal dissemination of information through the nodes of a
network.1 The common thread that runs through all three of

them is that degree-based local heuristics exist for forward-
ing information through the nodes of the network so that,
globally, good statistical properties are achieved �such as ex-
pecting delivery to occur for most nodes, for example�. How-
ever, when disseminating information globally is the goal,
we find that designing heuristics based on node degrees,
even though meritorious by their eminently local nature, is
somewhat lacking in plausibility, since important
performance-related notions, like locally available band-
width and node congestion, for example, remain inad-
equately accounted.

We see, then, that even as we move from the merely to-
pological aspects of a network toward its higher-level, func-
tional aspects, there remain entities that make up a node’s set
of local characteristics �e.g., node congestion� which ulti-
mately can be understood as originating higher up at more
abstract levels �e.g., the protocols that steer information this
way or that as it moves through the network�. Clearly, un-
derstanding such entities seems to be one of the fundamental
keys to better design decisions at the upper levels. And even
though the setting of computer networks provides good ex-
amples here, note that very similar issues are present in other
contexts, such as that of networks representing road or street
maps and, in fact, any other network where end-to-end flows
of some sort intersect one another.

In this paper we study the load of a node in a scale-free
network. This property, also known as “betweenness central-
ity,” was analyzed in Ref. �8� and gives, for the node in
question, the total communication demand on that node
when all node pairs sustain a uniform, bidirectional message
traffic between them on shortest paths. Clearly, the load of a
node is one of the aforementioned entities, bridging the vari-
ous levels of abstraction at which the network may be ana-
lyzed. The study in Ref. �8� is essentially based on simula-
tions and ends with the conjecture that nodal load is
distributed as a power law whose exponent is invariant with
respect to � in the range �2,3�. We follow a different ap-
proach, providing both a semianalytical treatment and results
from computational simulations. As we discuss henceforth,

1Outside the computer-network context, exceptions are to be
found in areas such as the spreading of epidemics �18�, opinion
formation �19,20�, and game theory �21�, to name some.
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we have found that the nodal-load distribution in the scale-
free case is richly detailed in a way that can be understood by
resorting to appropriate graph-theoretic concepts, such as
breadth-first-search �BFS� trees and descents. This contrasts
sharply with the purported nature of such a distribution as a
power law and also with the conjecture of a universal
exponent.2

II. DESCENTS AND NODAL LOAD

We conduct our study entirely on undirected random
graphs whose degrees are distributed as a power law. Also, in
order to avoid any spurious effects resulting from the exis-
tence of node pairs joined by no path at all, we concentrate
exclusively on each graph’s giant connected component
�GCC�, which for ��3.47 is guaranteed to exist �7�. For the
sake of the analysis in this section, we then assume that G is
a connected undirected graph. We let n be the number of
nodes in G.

Shortest paths in G are intimately connected with the
graph’s so-called BFS trees �9�. For each node r of G, a BFS
tree of G rooted at r spans all of G’s nodes and results from
the process of visiting all nodes, beginning at r, in the fol-
lowing manner. First r is marked as visited and placed in a
queue. Then we repeatedly consider the node at the head of
the queue, mark as visited all its neighbors that are not yet so
marked, add them to the tail of the queue, and finally remove
it from the queue. This is repeated until the queue becomes
empty. If i is the head-of-the-queue node when its neighbor j
is appended to the queue, then a tree edge is created between
i and j. At the end, the resulting tree comprises exactly one
path from r to each other node, and this path is shortest. Of
course, depending on the order of addition of a node’s neigh-
bors to the queue, multiple BFS trees may exist for the same
root r, and consequently, multiple shortest paths from r to
each of the other nodes.

Let tr be the number of distinct BFS trees rooted at r and
Tr

1 , . . . ,Tr
tr the trees themselves. If Tr

t is one of these trees,
then we define the descent of node i in Tr

t , denoted by dr
t�i�,

as the number of nodes in the subtree of Tr
t rooted at i. This

definition is also valid for i=r and includes i in its own
descent �thus dr

t�i�=n if i=r and dr
t�i�=1 if i is a leaf in Tr

t�.
We see that, by definition, dr

t�i� is the number of shortest
paths on Tr

t that lead from r to some other node through node
i.

A node’s descents are then related to its load.3 Assuming,
as we do henceforth, that the notion of load includes traffic
from the node in question to itself, then one possibility for
expressing the load of node i in terms of its descents might
seem to be to write it as �r=1

n �t=1
tr dr

t�i�. Notice, however, that
this would make each pair of nodes weight in the load of
node i in proportion to the number of shortest paths between
them going through i, which is not acceptable: the definition

of load refers to uniform traffic between all node pairs,
meaning that the traffic between pairs interconnected by
multiple shortest paths is distributed among those paths.

In order to avoid this distortion and still be able to do
some mathematical analysis, we consider node i’s average
descent in trees Tr

1 , . . . ,Tr
tr, denoted by dr�i�, and substitute it

for �t=1
tr dr

t�i� in the previous expression. Since dr�i�
=�t=1

tr dr
t�i� / tr, this corresponds to assuming that each of the

multiple shortest paths between a node pair carries the same
fraction of the total traffic between the two nodes. If ��i� is
the load of node i, the approximation we use is then

��i� = �
r=1

n

dr�i� . �1�

As we move to the setting of the GCC of a random graph
whose degrees are power-law distributed, even a relation as
simple as the one in Eq. �1� on the corresponding random
variables is of little help, since a node’s descents in the vari-
ous BFS trees are not independent of one another. For this
reason, in the remainder of this section we limit ourselves to
pursuing the relatively simpler goal of analyzing the descent
distribution of a randomly chosen node in a randomly chosen
BFS tree.

If i and r are such a node and the root of such a tree,
respectively, and if i has ci immediate descendants on the
tree, then clearly

dr
t�i� = �1, if ci = 0,

1 + �
j=1

ci

dr
t�j� , if ci � 0,� �2�

where Tr
t is assumed to be the tree in question. In the case of

formally infinite n, it is possible to model descents via the
branching process whose branching probabilities are given
by the distribution of immediate descendants on the tree. If
such a distribution is Poisson, for example, then descents can
be found to be distributed according to the Borel distribution
�10�. Other examples include a generalization of the Poisson
case, yielding a generalization of the Borel distribution �11�.
The branching probabilities of interest to us, however, are of
difficult analytical determination �cf. Sec. III�, and for this
reason, unlike the Poisson case or its aforementioned gener-
alization, there is little hope of determining the descent dis-
tribution as a closed-form expression. Even so, some analyti-
cal characterization remains within reach.

For c�0 and d�1, let Pc and Qd be, respectively, the
probabilities that a randomly chosen node has c immediate
descendants and descent equal to d in a randomly chosen
tree. Let the corresponding generating functions be P�x� and
Q�x�, that is,

P�x� = �
c�0

Pcx
c �3�

and

2The universality of the nodal-load distribution has also been con-
tested in the correspondence of Refs. �22,23�, but the discussion
seems to have lacked a satisfactory conclusion.

3This relation has also been pointed out elsewhere in a manner
similar to the one we develop in this paper �24,25�.
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Q�x� = �
d�1

Qdxd. �4�

Considering Eq. �2�, and by well-known properties of prob-
ability generating functions �12,13�, we have

Q�x� = xP„Q�x�… , �5�

where the x factor compensates for the fact that the sum in
Eq. �4� starts at d=1 �instead of d=0�—thus accounting for
the 1 summand in Eq. �2�—and P(Q�x�) is the generating
function of the distribution of the sum of a Pc-distributed
number of independent, Qd-distributed random variables.

In order to continue with the determination of each Qd,
we proceed in the same manner as Refs. �10,11�, based on
the approach of Ref. �14�. First we let q=Q�x�, so that Eq.
�5� becomes x= f�q�=q /P�q�, and define g�q�=q. Then we
apply Lagrange’s expansion �15� directly: since f��0��0 and
g�q� is infinitely differentiable, g can be expressed as the
power series in x given by

g�q� = g�0� + �
d�1

xd

d!
� dd−1

dqd−1	g��q�
 q

f�q�
�d�

q=0
. �6�

Comparing Eqs. �4� and �6�, in turn, yields

Qd =
1

d!
� dd−1

dqd−1	g��q�
 q

f�q�
�d�

q=0

=
1

d!� dd−1

dqd−1	
�
c�0

Pcq
c�d�

q=0

=
1

d!	 dd−1

dqd−1
 �
m�0

Rmqm��
q=0

, �7�

where, by a well-known equality �16�,

Rm = �P0
d, if m = 0,

�1/mP0��
l=1

m

�ld − m + l�PlRm−l, if m � 0.� �8�

After careful �but tedious� calculation, we obtain

Qd =
Rd−1

d
. �9�

III. COMPUTATIONAL METHODOLOGY

We use n=1 000 in all our simulations. The reason for
such a relatively modest value of n is that, for statistical
significance, sufficiently many repetitions are needed for
each of the three sources of randomness. These are the num-
ber of graphs for each value of � �we use 10 000�, the num-
ber of roots for each graph �we use all nodes in the graph’s
GCC, whose number we denote simply by nGCC even though
it depends on the graph�, and the number of BFS trees for
each root �we use 50�. For each value of �, the two distribu-
tions of interest �viz., the descent distribution and the nodal-
load distribution� can be obtained by computing descents and

accumulating them as needed to yield the nodal loads as in
Eq. �1�.

Each graph is generated in the following manner. First we
sample a degree for each of the n nodes from the power-law
degree distribution �this is repeated until a realizable degree
sequence turns up—i.e., one whose degrees sum up to an
even value� and fill an imaginary urn with balls labeled with
node numbers. Each node is represented in the urn by as
many balls as its degree. Then ball pairs are withdrawn uni-
formly at random from the urn until it becomes empty. For
each pair, an edge is created between the nodes whose num-
bers are on the balls. This method may occasionally generate
self-loops or multiple edges between the same two nodes,
but it remains the method of our choice because it deploys
edges independently of one another, which conforms to the
independence assumption behind Eq. �5�. We do not remove
self-loops or multiple edges from the graph when they occur,
but the reader should note that this is in no way problematic,
since the number of distinct BFS trees of the graph is inde-
pendent of their presence �this follows directly from the al-
gorithm outlined at the beginning of Sec. II�.

The fact that we are constrained to operating within each
graph’s GCC has to be taken into account carefully, since for
the larger values of �, nGCC tends to be distributed around a
lower mean and more widely, as illustrated in Fig. 1. The
consequences of this are twofold. First, as demonstrated in
Ref. �7�, a random graph’s degree distribution is not pre-
served when conditioned upon the nodes’ being part of the
graph’s GCC; so, even though we generate the graph from a
scale-free degree distribution, such a property is not guaran-
teed to hold within the GCC. Second, the analytical predic-
tion of the descent distribution embodied in Eq. �9� is the
result of assuming a formally infinite number of nodes �if
not, then once again the independence assumption underly-
ing Eq. �5� makes little sense�, which is clearly an ever
cruder assumption as � increases and the GCC decreases.

Another source of difficulties concerning Eq. �9� is that it
depends on the distribution of a node’s immediate descen-
dants on BFS trees �i.e., Pc for c�0�, which to our knowl-
edge cannot be determined analytically with satisfactory cor-
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FIG. 1. �Color online� Distributions of GCC sizes �nGCC�.
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rectness or accuracy.4 What we do is to resort to simulation
data to fill in for this distribution, but even this has to be
approached carefully, for reasons that are apparent in Fig. 2.
In this figure, the distribution of immediate BFS descents
within the GCC is shown for three values of � and two val-
ues of n. For fixed �, the distribution seems to be approxi-
mately the same �except for variations due to finite-size ef-
fects� for both n=1 000 and n=10 000. So, although all our
simulations are carried out for the smaller of these values of
n, we use simulation data relative to the larger one, since the
effects of finite n only become manifest for significantly
higher degrees.

We remark, in addition, that this use of simulation data in
lieu of the distribution called for in Eq. �9� may itself be
prone to severe inaccuracy because of the already mentioned
dependence on � of the GCC-size distribution. For the larger
values of �, the fact that GCC sizes are widely varying im-
plies that any number giving a node’s immediate BFS de-
scent is necessarily highly dependent on the size of the cur-
rent GCC. Ideally, we should express such numbers as
fractions of nGCC �as in fact we do in Sec. IV for other
quantities�, but this would require—in place of Eq. �9�—an
expression in terms of such fractions as well. Regrettably, we
have no such expression just yet.

IV. COMPUTATIONAL RESULTS AND DISCUSSION

Our computational results are summarized in Figs. 3 and
4 for five values of � in the interval �2,3�. Figure 3 gives the
descent distributions and also their analytical predictions as
given by Eq. �9�. Since no descent value is larger than the

GCC size �nGCC� for the graph in question, all data are shown
normalized to the appropriate nGCC: simulation data are nor-
malized to the corresponding GCC sizes occurring during the
simulation and analytical data to the mean GCC size for the
� value at hand.

Notice that all simulated probabilities accumulate signifi-
cantly at the largest possible normalized descent. While this
is clearly due to the finiteness of n, for ��2.75 it also indi-
cates that, had we been able to afford substantially larger
values of n, we could expect this accumulated probability to
spread through values of normalized descent one to two or-
ders of magnitude below the maximum and make the simu-
lation data agree with the analytical predictions ever more
closely from below. As we discussed in the previous section,
this is in good agreement with the limitations we expect Eq.
�9� to have for relatively small values of n. As for the re-
maining value of � ��=3�, recall that in this case the effect of
relatively small n is considerably severer, since nGCC has a
very low mean and is also very widely spread. So, while we
may still expect good agreement between simulation and

4One noteworthy attempt is recorded in Ref. �26�, where the au-
thors ingeniously model the process of BFS-tree construction in
continuous time and derive the required probabilities from this
model. However, their analysis assumes that degrees in the graph
are at least 3 �which we find unreasonable� and, furthermore, seems
to involve a probability that is ill defined �may be valued beyond 1�.
All of this can in principle be fixed �27�, but currently requires BFS
queues to be modeled in a way that we think is not possible.
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analytical data as n grows, this seems to be reasonable only
for values of n even larger than for the previous � values.

All the simulation data in Fig. 4 are also normalized, but
now to nGCC

2 , since the greatest load value a node may have
grows quadratically with the number of nodes.5 These data
are plotted against power laws of exponent −2.2, which is the
exponent that in Ref. �8� is conjectured to be universal with
respect to � for large n. And in fact the agreement of these
power laws with the simulation data seems good for ��2.5,
as in these cases GCC sizes have a relatively high mean and
low spread. However, unlike the case of the descent distri-
butions, normalizing and binning the raw simulation data for
the load distributions has the deleterious effect of masking
important information that is present in the raw data and
allows nodal-load distributions to be interpreted in terms of
the underlying descents.

This is illustrated in Figs. 5 and 6. The former of these
shows the same data for �=2 as Fig. 4, but without any
binning. Immediately we see that there is important structure
to be interpreted, but this is made difficult by the normalized
abscissae. Filtering the data so that normalization is no
longer needed yields the latter of the two figures, for ex-
ample, where the raw simulation data are shown for �=2, but
restricted to the 95 graphs having nGCC=904, where 904 is
the observed mean GCC size. What we see in this figure is a
succession of sharply defined probability peaks. The first
peak occurs for a load value of 1807, the second one for
3611, the third for 5413, and so on. If we examine these
numbers in the light of Eq. �1�, which expresses a node’s
load in terms of nGCC average descents, one for each possible
root, then they can be explained as follows.

�i� The first peak’s location can be decomposed as 1807
=904�1+1�903 and therefore accounts for those nodes
whose average descent is 904 for exactly one root �this hap-
pens for every node and corresponds to the trees rooted at it�
and 1 for all the remaining 903 roots �in whose trees they are
leaves�. This, clearly, is true of all degree-1 nodes. Note also
that the roots in whose trees the nodes in question have av-

erage descent 1 constitute the near totality of the roots.
�ii� The location of the second peak can be similarly de-

composed, for example, as 3611=904�1+903�1+2
�902, referring to those nodes whose average descent is 904
when they are root, is 903 for one other root, and 2 for the
remaining 902 roots. There may exist degree-2 nodes that
conform to this arrangement of average descents, but this is
no longer necessary. Also, now it is the roots in whose trees
the nodes in question have average descent 2 that constitute
the overwhelming majority of the roots.

�iii� For the third peak, we can write 5413=904�1
+903�2+3�901, now referring to nodes that have average
descent 904 when they are root, 903 for two other roots, and
3 for the remaining 901 roots. Once again, it is possible,
though not necessary, for degree-3 nodes to exist conforming
to this arrangement. Continuing the trend established by the
previous two cases, the roots in whose trees the nodes in
question have average descent 3 are by far the most numer-
ous.

This same pattern of “diophantine” decomposition can be
applied to the subsequent peaks and, although the correspon-
dence to node degrees beyond 1 is not guaranteed, we see
that peak locations tend to become chiefly determined by the
average descents which, from our previous analyses, we
know are the most frequently occurring: 1, then 2, then 3,
etc.

Naturally, similar filtering can be applied to different val-
ues of nGCC with similar results. As for larger values of �, we
remark that the same type of behavior can also be observed,
provided � is sufficiently small for GCC sizes to be relatively
large and concentrated around the mean.

V. CONCLUDING REMARKS

We have considered the load of nodes in scale-free net-
works and have studied its distribution from the perspective
of expressing a node’s load in terms of the node’s descents in
all BFS �or shortest-path� trees in the graph. We have char-
acterized the descent distribution semianalytically by resort-
ing to a generating-function formalism and to simulated data5Consider the case of a star graph and the load of the center node.
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on the distribution of immediate BFS descents. We then stud-
ied the distribution of nodal load, but through computer
simulations only �analytical work in this case would require
independence assumptions that we found to be too strong�.

Our results have allowed us to revisit the results of Ref.
�8� on the load distribution, particularly the conjecture that
such a distribution is a power law whose exponent does not
depend on � �i.e., is independent of the underlying graph’s
degree distribution in the scale-free case�. The purported uni-
versal exponent of the load distribution is −2.2, and indeed
we have been able to confirm that such an exponent seems
satisfactorily accurate for large networks after data have been
conveniently normalized and binned.

Looking at the raw data, however, reveals that the load
distribution is richly structured in a way that can be under-
stood precisely by resorting to the characterization of nodal
load in terms of descents in BFS trees. In our view, this
discovery indicates that nodal load is not power-law distrib-
uted and that the conjecture of a universal exponent makes,
after all, little sense. Of course, the origin of the previously

accepted conclusion and conjecture seems to have been the
mishandling of data by inappropriate binning. This, along
with other pitfalls of a similar nature, is often the source of
inaccurate data interpretation �17�.

We note, finally, that studying quantities like descents in
trees and nodal load is well aligned with what we think
should be the predominating direction in complex-network
investigations. The overwhelming majority of network stud-
ies so far have concentrated primarily on structural notions
of a predominantly local nature �e.g., node-degree distribu-
tions�. Descents and loads, on the other hand, are examples
of structural notions of a more global nature and, for this
very reason, their study constitutes an important step toward
complex-network research that emphasizes the networks’
functional, rather than structural, properties.
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