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Abstract

Learning causal effects from data is a fundamental problem across the sciences.
Determining the identifiability of a target effect from a combination of the ob-
servational distribution and the causal graph underlying a phenomenon is well-
understood in theory. However, in practice, it remains a challenge to apply the
identification theory to estimate the identified causal functionals from finite sam-
ples. Although a plethora of effective estimators have been developed under the
setting known as the back-door (also called conditional ignorability), there exists
still no systematic way of estimating arbitrary causal functionals that are both
computationally and statistically attractive. This paper aims to bridge this gap,
from causal identification to causal estimation. We note that estimating functionals
from limited samples based on the empirical risk minimization (ERM) principle
has been pervasive in the machine learning literature, and these methods have
been extended to causal inference under the back-door setting. In this paper, we
develop a learning framework that marries two families of methods, benefiting
from the generality of the causal identification theory and the effectiveness of
the estimators produced based on the principle of ERM. Specifically, we develop
a sound and complete algorithm that generates causal functionals in the form of
weighted distributions that are amenable to the ERM optimization. We then provide
a practical procedure for learning causal effects from finite samples and a causal
graph. Finally, experimental results support the effectiveness of our approach.
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1 Introduction

Inferring causal effects from data is a fundamental challenge that cuts across the empirical sciences
[34, 46, 35]. There exists a growing literature trying to delineate the conditions under which causal
conclusions can be drawn from non-experimental data. One common task in the field is known as
the problem of causal effect identification (identification, for short). Identification asks whether
a causal distribution P (Y = y|do(X = x)) (for short, P (y|do(x))) can be uniquely computed
from a combination of the observational distribution P (V ) and qualitative knowledge about the
domain, which is usually encoded as a causal graph G [34, Def. 3.2.4]. Causal identification has been
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extensively studied based on the do-calculus [33], and complete graphical and algorithmic conditions
have been developed for variants of this problem [48, 22, 45, 2, 3, 24, 30, 29].

For concreteness, consider the task of identifying the effect of X on Y , P (y|do(x)), from the causal
graph G in Fig. 1(a) and an observational distribution P (v), where V = {Z,X, Y } is the set of
observed variables. An identification algorithm will return an expression such as P (y|do(x)) =∑

z P (y|x, z)P (z). In words, this means that the target effect (l.h.s.), which is unobserved, is equal
to a function of observed quantity, shown on the r.h.s.. Remarkably, the result of this analysis –
the identification expression – is given in terms of distributions, and one needs to go further and
estimate this quantity from finite samples, providing a realizable, empirical estimator of the r.h.s.. In
practice, estimating arbitrary causal expressions from finite samples is challenging, both statistically
and computationally. The only viable general-purpose method is the “plug-in estimator” [10], which
estimates conditional probabilities (e.g., P (y|z, x)) by imposing parametric model assumptions.
However, the method suffers computationally on high dimensional data [15].

One prominent setting where effective estimators have been developed is when the back-door (BD)
condition holds [34, Sec. 3.3.1] (known as ignorability in statistics [42]), as in Fig. 1(a). In fact, there
exist a plethora of efficient and computationally attractive statistical estimators to evaluate the BD
functionals, also known as g-formula [39], including [41, 36, 40, 1, 49, 21], just to cite a few. More
recently, different estimators were developed for identifiable effects that go beyond the BD settings
[27, 16, 6]. Despite all the power achieved by these methods, there exists still no systematic way of
estimating arbitrary identifiable functionals that are both computationally and statistically attractive.

On a different thread, the challenge of estimating functionals has been pervasive throughout the ma-
chine learning literature, which is especially acute in higher dimensions. The issue of generalizability
from the sample to the corresponding population is often studied through the principle of structural
risk minimization [50]. This principle has been applied successfully across a number of applications
[28, 5, 7, 19, 13, 31, 53, 14]. In domain adaptation, for instance, the issue of generalization is
pretty salient, and one would train a weighted predictor on a target domain using data from a source
domain by employing what is known as the weighted empirical risk minimization (WERM) method
[44, 5, 18, 38, 4, 12, 54, 9, 52]. These results have been extended and applied to causal inference
settings as well, where the generalization step is from the observational to the experimental domain
[8, 47, 25, 43, 26, 32, 20]. For instance, one could take an WERM approach leveraging weights (such
as the ones coming from the IPW) computed in the observational domain to answer an experimental
query in the target [47, 26]. Despite all the robustness exhibited by such an approach, the validity of
its application in causal inference is still contingent on the BD or ignorability condition.

The goal of this paper is to marry two families of methods, benefiting from the generality of the causal
identification methods based on graphs (i.e., ID) and the effectiveness of the estimators produced
based on the principle of WERM. We call this new framework by WERM-ID, shortcut for Weighted
Empirical Risk Minimization for Causally Identifiable Functionals. We exemplify the difficulties of
this marriage for both spouses (WERM and ID) through a simple example.
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(b) Example 1

Figure 1: Causal graphs corresponding to BD and
Example 1. Nodes representing the treatment and
outcome are colored in blue and red, respectively.

Example 1. The causal graph in Fig. 1b illus-
trates a data-generating process of an observa-
tional study that leverages a surrogate endpoint
X , a variable intended to substitute for a clinical
endpoint Y when the clinical endpoint is hardly
accessible [27]. Suppose one is interested in esti-
mating the causal effect of X (CD4 cell counts)
on Y (Progression of HIV) to support the use of
CD4 cell counts as a surrogate endpoint [23]. R
denotes the treatment that affects the CD4 cell
counts and W is a set of confounders affecting
the treatment (e.g., a previous disease history).
If one runs a standard identification algorithm,
the resultant estimand is given by:

P (y|do(x)) = (
∑
w

P (y, x|r, w)P (w))/(
∑
w

P (x|r, w)P (w)). (1)

The target effect P (y|do(x)) (l.h.s.) can be estimated through the ratio of these two quantities (r.h.s.),
which is not in the form of a BD expression. Unfortunately, a standard WERM solver cannot take

2



this expression as input since it doesn’t conform with the expected form. In other words, the output
of a standard ID algorithm cannot be used as the input for a standard WERM procedure.

One may be tempted to surmise that the marriage may not be viable, after all, these two are perhaps
qualitatively different species. Perhaps surprisingly, as formally shown in Section 3, this is just a
small bump in the relationship, which can be circumvented by writing the causal estimand Eq. (1)
in a friendlier form. Specifically the causal effect in Eq. (1) can be rewritten as P (y|do(x)) =
P (y|do(r), x), where the interventional distribution P (x, y, w|do(r)) =WP (x, y, w, r) takes the
form of a weighted distribution with weight functionW = 1/P (r|w), such that the samples of the
original P weighted byW could be treated as if they were drawn from the interventional distribution.
On the lens of WERM, the causal effect in Eq. (1), written as P (y|do(r), x) could be precisely
realized by learning the conditional distribution P (y|x) weighted by W . This demonstrates an
instance of the WERM-ID marriage.

This observation leads to the question on whether other identifiable functionals can be converted to
a form that is amenable to WERM optimization. In this paper, we answer to this question in full
generality, and provide a learning framework that combines the theory of causal effect identification
with the principle of WERM. More specifically, our contributions are as follow:

1. We develop a sound and complete algorithm that generates any identifiable causal functionals
as weighted distributions, amenable to WERM method.

2. We formulate the causal estimation problem as an WERM optimization. We introduce a
learning objective, inspired by generalization error bound, and provide theoretical learning guarantee
to the solution.

3. We develop a practical and systematic algorithm for learning target causal effects from finite
samples given a causal graph, based on the proposed framework. The practical effectiveness of this
approach is corroborated through simulated studies.

Due to space constraints, the proofs are provided in the Appendix C (Supplemental Material).

2 Preliminaries

Structural Causal Models. We use the language of structural causal models (SCMs) [34, pp. 204-
207] as our basic semantical framework. Each SCMM over a set of variables V has a causal graph
G and a distribution PM(v) (shortly, P (v)) associated to it. Solid-directed arrows encode functional
relationships between observed variables, and dashed-bidirected arrows encode unobserved common
causes (e.g., see Fig. 1b). Within the structural semantics, performing an intervention, and setting
X = x, is represented through the do-operator, do(X = x), which encodes the operation of replacing
the original equations of X by the constant x, and induces an experimental distribution P (v|do(x)).
Given a causal graph G over a set of variables V, a causal effect P (y|do(x)) is said to be identifiable
from G if P (y|do(x)) is uniquely computable from P (v) in any SCM that induces G. For a detailed
discussion of SCMs, refer to [34].

Notations. Each variable will be represented with a capital letter (X) and its realized value with the
small letter (x). We will use bold letters (X) to denote sets of variables. Given an ordered set of
variables X = (X1, · · · , Xn), we denote X(i) = (X1, · · · , Xi). We use An(C)G to represent the
union of C with its ancestors in the graph G. GC denotes the subgraph of G over C. EP [f(Y)|x]
denotes the conditional expectation of f(Y) over P (y|x). We will adopt weighting based techniques
for estimating causal effects, utilizing the following notation:

Definition 1 (Weighted distribution PW (v)). Given a distribution P (v) and a weight function
0 <W (v) <∞ such that EP [W(V)] = 1 and EP

[
W2(V)

]
<∞, a weighted distribution PW (v)

is given by PW (v) ≡ W(v)P (v).

Causal Effects Identification Complete causal effects identification algorithms have been developed
using a decomposition strategy of the causal graph based on confounded components.

Definition 2 (C-component [48]). In a causal graph G, two observable variables are said to be in
the same confounded component (for short, C-component) if and only if they are connected by a
bi-directed path, i.e., a path composed solely of bi-directed edges Vi ↔ Vj .
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For any C ⊆ V, the quantity Q [C], called C-factor, is defined as the post-intervention distribution
of C under an intervention on V\C: Q [C] ≡ P (c|do(v\c)). A joint distribution P (v) is factorized
by C-factors as P (v) =

∏
iQ [Si], where Si are the set of C-components in G. [48] developed a

complete causal identification algorithm based on the decomposition of C-factors.

3 Representing Causal Effects as Weighted Distributions
In this section, we present a sound and complete algorithm that identifies causal effects in the form of
weighted distributions. This result will be used later for estimation from finite samples by WERM.

By and large, we note that the functional returned by an identification algorithm for a given causal
graph G (whenever identifiable) is not in the form of weighted distributions that are amenable to
WERM optimization. To witness that this is possible, we analyze the causal functionals given in
Eq. (1), a resultant of a standard identification algorithm. First note that the numerator/denominator
in Eq. (1) are both in the form of a BD adjustment, such that the numerator can be rewritten as
the effect of R on {X,Y }: P (x, y|do(r)) =

∑
w P (y, x|r, w)P (w), and the denominator the

effect of R on {X}: P (x|do(r)) =
∑

w P (x|r, w)P (w), both with W as the adjustment set.
This observation leads to a well-known result that the effect of R on {X,Y } can be written as a
weighted distribution as P (x, y|do(r)) = PW(x, y|r) where the stabilized IPW weight is given in
the formW = P (r)/P (r|w) with R as the treatment and W as the adjustment set. Then the causal
effect in Eq. (1) can be written as P (y|do(x)) = P (x, y|do(r)) /P (x|do(r)) = P (y|do(r), x) =
PW (y|x, r). This weighted distribution form allows the causal effect to be estimated via WERM.

Rather than having to manually transform a causal functional into weighted distribution form, our
goal is to develop a fully systematical algorithm that can express any identifiable causal effects in
the form of weighted distributions. We develop our algorithm based on the identification algorithm
proposed in [48]. The main idea was to identify C-factors through recursively marginalizing and
decomposing C-components based on Lemmas 3 and 4 [48]. We prove next a key result that rewrites
the marginalization and C-components decomposition operations in terms of weighted distributions:

Lemma 1 (Computing C-factors as weighted distributions). For a topologically ordered set A =
{V1, V2, · · · , Vm} ⊆ V where V1 < V2 < · · · < Vm, suppose Q [A] is given by Q [A] = PW(a|r)
for some R ⊆ V and W > 0. Let S be an union of C-components in GA. Let W ⊆ S satisfy
W = An(W)GS

. Then Q [W] is identifiable and is given by Q [W] = PW×W
′
(w|r′), where

R′ ≡ (R ∪ (A\S)) ∩An(W) andW ′ ≡ PW((a\s)∩An(w)|r)∏
Vi∈(A\S)∩An(W) P

W(vi|v(i−1)∩An(w),r)
.

In words, the proposition will recursively compute the C-factors in terms of weighted distributions.
The base case is A = V, and we have Q [V] = P (v) = PW0 (v|r0) withW0 = 1 and R0 = ∅. The
significance of this result stems from the fact that it will allow one to rewrite the complete algorithm
in [48] to express identifiable causal effects in the form of weighted distributions. The new algorithm
is shown in Algo. 1 and its equivalence with the original is shown next:

Theorem 1 (Soundness and Completeness of Algo. 1). A causal effect P (y|do(x)) is identifiable
if and only if wID(x,y, G, P ) (Algo. 1) returns PW (y|r) such that P (y|do(x)) = PW (y|r).

In words, re-writing an identifiable effect in terms of weighting entails no loss of information.
This may be surprising since there is no reason to believe a priori that arbitrary estimands could
be written in the form of weighted distributions. For concreteness, we demonstrate the applica-
tion of Algo. 1 using the model in Fig. 1b, where P (y|do(x)) is identified by [48] as given in
Eq. (1) (i.e., not in the weighting-form). We start with S1 = {W,X, Y } and S2 = {R} (Line
2). We then derive Q [S1] = PW1 (s1|r) where W1 = P (r)/P (r|w), and Q [S2] = P (r|w)
by Lemma 1 (with A = V and W = S) (Line 3). Let D = An(Y )V\X = {Y } (Line
4). Run wIdentify(Y, {W,X, Y } , Q [W,X, Y ] , r,W1 = P (r)/P (r|w)) (Line 6). Let A1 =
An(Y )W,X,Y = {X,Y }, then Q [A1] = PW1 (a1|r) (Line 1). In GA1

= G{X,Y }, let SY ≡ {Y }
denote the C-component containing Y (Line 5). Then, Q [SY ] = Q [Y ] = PW1×W′ (y|r′) where
W ′ = 1, r′ = {R,X} (Line 6). Finally we obtain P (y|do(x)) = PW1 (y|x, r).
The importance of Thm. 1 lies in that it facilitates an end-to-end solution to causal effect estimation
from finite samples: Causal graph→ Determine the identifiability→ Produce a causal estimand→
Formulate WERM learning objective with learning guarantee→ Solve the optimization problem→
Estimation. We’ll discuss the last steps of this pipeline in the next section.
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Algorithm 1: wID (x,y, G, P )

Input: x,y, G, P
Output: Expression of P (y|do(x)) as a weighted distribution; or FAIL if P (y|do(x)) is unidentifiable.

1 Let V← An(Y); P (v)← P (An(y)); and G← GAn(Y).
2 Find the C-components of G: S1, · · · ,Sk.
3 Let Q [Si] = PWsi (si|rsi) where (Wsi , rsi) are derived from Lemma 1.
4 Let D ≡ An(Y)V\X.
5 Find the C-component of GD: D1, · · ·DK .
6 For each Di ∈ Sj for some (i, j), let Q [Di] = PWdi (di|rdi) where PWdi (di|rdi) is derived by

wIdentify
(
Di,Sj , Q [Sj ] , rsj ,Wsj

)
.

7 LetW ≡
∏K
i=1 P

Wdi (di|rdi) /P (d|r) where R ≡ V\D.
8 return P (y|do(x)) = PW (y|r)

Procedure wIdentify(C,T, Q [T] , r,W)
// Note Q [T] = PW(t|r).

1 Let A ≡ An(C)T, then Q [A] = PW(a|r) by Lemma 1.
2 if A = C then

return Q [C] = PW (a|r)
end

3 if A = T then
return FAIL

end
4 else
5 Let S denote the C-component in GA such that C ⊆ S.
6 Compute Q [S] = PW×W

′
(s|r′) where (W ×W ′, r′) are derived by Lemma 1.

7 return wIdentify (C,S, Q [S] , r′,W ×W ′)
end

4 Learning Causal Effects via Weighted Empirical Risk Minimization

Algo. 1 allows us to write any causal effect as a weighted distribution, namely, P (y|do(x)) =
PW

∗
(y|r) for some weight functionW∗(v) > 0 and R ⊆ V. For example, for the model given

in Fig. 1b, we have shown that P (y|do(x)) = PW
∗
(y|r, x) where W∗ = P (r)/P (r|w). In this

section, we will develop an algorithm for learning PW
∗
(y|r), i.e., the causal effect that has been cast

as a weighted distribution, using finite samples D = {V(i)}mi=1 drawn from P (v). We will focus on
learning E[Y |do(x)] = EPW∗ [Y |r].

4.1 Learning Setup: Weighted Empirical Risk Minimization

In the WERM setting, we attempt to learn a function h(r) that approximates EPW∗ [Y |r], and the task
can be viewed as a supervised learning problem of choosing the best hypothesis h from a hypothesis
class H that minimizes a loss function `(h(r), y). Here `(y′, y) is a loss function suitable for the
application, for example, the squared loss `(y′, y) = (y′ − y)2. Formally, the learning task can be
expressed as minimizing the expected loss on PW

∗
, known as the weighted risk:

RW
∗
(h) ≡ EPW∗ [`(h(R), Y )] = EP [W∗(V)`(h(R), Y )] . (2)

Given data D = {V(i)}mi=1 drawn from P (v), the corresponding weighted empirical risk (WER) is

R̂W
∗
(h) ≡ 1

m

m∑
i=1

W∗(V(i))`
(
h(R(i)), Y(i)

)
. (3)

Generalization Bound. While minimizing the WER R̂W
∗
(h) is consistent, the corresponding

estimator could suffer from high variance in small samples and lead to unstable estimates [47, 26].
For instance, forW∗ = P (r)/P (r|w), R̂W∗(h) could have large variance if P (r|w) is very small,
potentially resulting in the minimizer h of Eq. (3) to overfit the data. To mitigate this issue, we
introduce a new weight functionW intended to be an approximation ofW∗ but with a lower variance,
leading to the re-weighted empirical risk R̂W(h) ≡ 1

m

∑m
i=1W(V(i))`

(
h(R(i)), Y(i)

)
. The relation

between R̂W(h) and the target WER RW
∗
(h) is given by the following generalization error bound:
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Proposition 1 (Generalization bound [12, Thm.4]). Let p denote the Pollard’s pseudo-dimension1

of loss function `h(v) ≡ ` (h(v),y) and P̂ denote the empirical distribution of P . Then, for any
δ ∈ (0, 1), with probability at least 1− δ, the following holds:

|RW
∗
(h)− R̂W(h)| ≤ EP [|W∗(V)−W(V)|]︸ ︷︷ ︸

(a)

+25/4 max

(√
EP [W2`2h],

√
EP̂ [W2`2h]

)
︸ ︷︷ ︸

(b)

F (p,m, δ)︸ ︷︷ ︸
(c)

,

(4)

where F (p,m, δ) ≡
(
(p log(2me/p) + log(4/δ))

3/8
)
/(m3/8).

Prop. 1 implies that the distance betweenW andW∗ (Eq. (4a)), the second moment (variance) ofW
(Eq. (4b)), and the pseudo-dimension p of `h (Eq. (4c)) all contribute to the error bound. In particular,
even though directly minimizing WER R̂W

∗
(h) (settingW =W∗) may lead to an estimator with

small bias, the results can still suffer from high variance due to Eq. (4b).

Learning Objective. Motivated by Prop. 1, we propose to simultaneously learn a hypothesis h that
minimizes R̂W(h) and a weight function W that approximate W∗ while penalizing the variance
ofW , adopting the common idea of minimizing a upper bound of the target risk [18, 47, 26, 14].
Specifically, we propose the following learning objective

L (W, h) ≡ R̂W(h) +
λh
m
C(h)︸ ︷︷ ︸

Lh(h,W,λh)

+

√√√√ 1

m

m∑
i=1

(
W(V(i))−W∗(V(i))

)2
+
λW
m
‖W‖22︸ ︷︷ ︸

LW (W,λW ;W∗)

, (5)

where Lh(h,W, λh) consists of the WER R̂W(h) and a regularizer C(h) of h, such as L1 or L2

regularization for the parameters of h; LW(W, λW ;W∗) measures the deviance ofW fromW∗ with
L2 regularization to penalize the variance ofW; and (λh, λW) are hyperparameters.

The objective function proposed in Eq. (5) is validated by ensuring that its minimizers converge to
the minimizer of the target risk, as shown by the following result:

Theorem 2 (Learning guarantee). Let h∗ ≡ argminh∈HRW
∗
(h), and (Wm, hm) ≡

argminW∈HW ,h∈H L (W, h), where HW is the model hypotheses class for W . Suppose HW
is correctly specified such thatW∗ ∈ HW . Then, hm converges to h∗ with a rate of Op(m

−1/4).
Specifically,RW∗(hm)−RW∗(h∗) ≤ Op(m

−1/4).

In words, the theorem ascertains that the hypothesis hm that minimizes the objective function
L (W, h) in Eq. (5) converges to the hypothesis h∗ that minimizes the target weighted riskRW∗(h)
in the limit of infinite samples.

4.2 Learning Algorithm

Algorithm 2: WERM-ID-R(D, G,x, y)
Output: An estimate of E [Y |do(x)] from

data sample D
1 Run wID (x, y,G, P ) and derive (W∗,R)

such that P (y|do(x)) = PW
∗
(y|r).

2 Evaluate Ŵ∗ from D.
3 Learn
W ≡ argminW′∈HW LW(W ′, λW ; Ŵ∗).

4 Learn h ≡ argminh′∈H Lh(h′,W, λh).
return Ê [Y |do(x)] ≡ h(r)

Putting these results together, we present in this sec-
tion a practical procedure for learning the causal ef-
fect E [Y |do(x)] from finite samplesD = {V(i)}mi=1
in a given causal graph G. The first step is to run
Algo. 1 wID (x,y, G, P ) to derive the target esti-
mand E [Y |do(x)] = EPW∗ [Y |r]. Then, we com-
pute the weightW∗ as an input to the objective func-
tion L (W, h) in Eq. (5). In practice, we only have
access to an estimate Ŵ∗ of the trueW∗. In general,
W∗ may be expressed in terms of weighted distri-

butions, e.g.,W∗ ≡ PW
′
(w,y|r,z)P (z|w,x)
P (w,z,y|r,x) whereW ′

may be expressed in other weighted distributions. We estimate P̂ (z|w, x) from D using some regres-
sion functions. To estimate a weighted distribution PW

′
(w, y|r, z), we propose: (1) evaluate W ′,

(2) draw samples DW′ that could be treated as if they were drawn from PW
′
(v), and (3) evaluate

1We refer to [37, 51] for the concept of pseudo-dimension.
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PW
′
(w, y|r, z) using DW′ . This recursive procedure avoids computational cost of marginalizing

high-dimensional variables. A procedure for evaluating Ŵ∗ is provided in Appendix B.

LearningW and h through minimizing the objective function L (W, h) in Eq. (5) turns out challeng-
ing in practice. Here we propose a heuristic procedure that works well in practice. The proposed
procedure learns W and h separately, as follows: First, one learns a weight function W that ap-
proximates Ŵ∗ but having regularized variance, i.e., W ≡ argminW′∈HW LW(W ′, λW ; Ŵ∗);
Equipped with W , one learns a hypothesis h by minimizing the regularized WER, i.e., h ≡
argminh′∈H Lh(h

′,W, λh), where the objective functions LW(W ′, λW ; Ŵ∗) and Lh(h
′,W, λh)

are given in Eq. (5). For concreteness, forW∗ = P (r)/P (r|w), we can write

W = arg min
W′∈HW

1

m

m∑
i=1

(W ′(R(i),W(i))− Ŵ∗(R(i),W(i)))
2 +

λw
m
‖W ′‖22 , (6)

whereHW is specified as gradient boosting regression models [11] in the experimental study. For a
binary variable Y ∈ {0, 1}, we could employ the cross-entropy loss function, which yields

h = arg min
h′∈H

− 1

m

m∑
i=1

W(V(i))
(
Y(i) log

(
h′(X(i), R(i))

)
+ (1− Y(i)) log

(
1− h′(X(i), R(i))

))
+
λh
m
C(h′)

(7)

whereH is also specified as gradient boosting functions in the experimental study.

The proposed procedure for estimating causal effects from finite samples is summarized in Algo. 2.
The following result provides the time complexity of the procedure:

Theorem 3 (Time complexity of Algo. 2). Let m = |D| and n ≡ |V|. Assume all weights satisfy
0 < W < c for some constant c > 0. Let T1(m) denote the time complexity for estimating
P̂ (vi|v(i−1)) from sample D ∼ P (v) for Vi ∈ V. Let K denote the number of C-components in
GD (in Algo. 1). Let T2(m) denote the time complexity for minimizing LW and Lh. Then, Algo. 2
runs in O (poly(n) + nK(mc+ nT1(m)) + T2(m)) time, where O (poly(n)) is for running Algo. 1,
O (nK(mc+ nT1(m))) for evaluating Ŵ∗.

For concreteness, suppose we estimate P̂ (vi|v(i−1)) using the gradient boosting regression models,
and we optimize LW and Lh by setting bothH andHW as the class of gradient boosting regression
models. Then, the time complexities T1(m) and T2(m) are both O(m logm) [11, Sec.4.1].

5 Experiments

We consider the following two practical examples shown in Fig. 2, in addition to Example 1. We
provide the derivation of target causal effects as weighted distributions by Algo. 1 in Appendix A.

X Z Y

W

(a) Example 2

W

X Z

R

Y

(b) Example 3

Figure 2: Causal graphs

Example 2. In the causal graph in Fig. 2a,
X represents sign-up for the job-training pro-
gram, Z actual participation, and Y the post-
program earnings [17]. Suppose there exist a
set of observed confounding variables W af-
fecting X , Y , and Z, and unmeasured ones
between (W,X), (X,Y ) and (W,Y ). The
data scientist aims to evaluate the effect of
signing-up for the program on the earnings,
P (y|do(x)). One can show that this quantity
is identifiable and given by the following func-
tional P (y|do(x)) =

∑
w,z P (z|x,w)P (w)

∑
x′ P (y|z, x′, w)P (x′|w).

Example 3. In the causal graph in Fig. 2b, the variables represent the patients’ characteristics:
socioeconomic factors (W ), diet habit (X), frequency of exercises (R), the level of cholesterol
(Z), and the occurrence of heart-disease (Y ). The scientist is interested in the effect of treatments
(X,R) on Y . One can show that this quantity is identifiable and given by the following functional
P (y|do(x, r)) =

∑
w,z P (z|w, x)

∑
x′ P (y|r, w, x′, z)P (x′|r, w)P (w).
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0

10

20

30

40

50

2 3 4 5 6 7 8 9 1011121314151617181920
D

C
PU

 ti
m

e 
(s

ec
)

Weight
Naive

Plug-in

WERM-ID-R

D=|W|

(e) Example 2 (Fig. 2a)

0

10

20

30

40

50

2 3 4 5 6 7 8 9 1011121314151617181920
D

C
PU

 ti
m

e 
(s

ec
)

Weight
Naive

Plug-in

WERM-ID-R

D=|W|

(f) Example 3 (Fig. 2b)

Figure 3: (Top) MAAE plots comparing proposed WERM based estimators (WERM-ID and WERM-
ID-R) with Plug-in. (Bottom) Plots comparing the running time of WERM-ID-R versus Plug-in.

Experiments Setup. We specify a SCM M for each causal graph and generate datasets D from M .
In order to estimate the ground truth µ(x) ≡ E [Y |do(x)], we generate mint = 107 samples Dint

from Mx, the model induced by the intervention do(X = x), and compute the mean of Y in Dint.

We denote WERM-ID-R the estimator given in Algo. 2. H andHW are set as the gradient boosting
regression classes. We also study a simpler variant, denoted WERM-ID, that directly minimizes the
WER R̂Ŵ

∗
(h) in Eq. (3) after evaluating Ŵ∗ from D. We compare the proposed methods with the

Plug-in estimator, the only natural method applicable to any causal functional, which computes each
conditional probability such as P (x|r, w) by plugging-in gradient boosting regression.

Accuracy Measure. Given a data set D with m samples, let µ̂IDR(x), µ̂ID(x), and µ̂plug(x) be
the estimated E [Y |do(x)] using the WERM-ID-R, WERM-ID, and Plug-in estimators. For each
µ̂ ∈ {µ̂IDR, µ̂ID, µ̂plug}, we compute the average absolute error (AAE) as |µ(x) − µ̂(x)| averaged
over x. We generate 100 datasets for each sample size m. We call the median of the 100 AAEs the
median average absolute error, or MAAE, and its plot vs. the sample size m, the MAAE plot.

Experimental Results. We evaluate the proposed WERM learning framework against the plug-in
estimators in Examples (1,2,3). All variables are binary but for W , which will be D-dimensional
binary. The detailed description of the corresponding SCMs are provided in Appendix D.

Example 1 (Fig. 1b). We test on estimating E [Y |do(x)] with D = 15 where the causal effect
P (y|do(x)) is given by Eq. (1). The MAAE plots are given in Fig. 3a. We observe that the
WERM-based methods (WERM-ID/WERM-ID-R) significantly outperform Plug-in.

Example 2 (Fig. 2a). We test on estimating E [Y |do(x)] with D = 15 where the effect P (y|do(x))
is given in the paragraph within Example 2 above. The MAAE plots are given in Fig. 3b. We observe
that the WERM-based methods (WERM-ID/WERM-ID-R) perform on par with Plug-in.

Example 3 (Fig. 2b). We test on estimating E [Y |do(x, r)] with D = 15 where P (y|do(x, r)) is
given in the paragraph within Example 3 above. The MAAE plots are given in Fig. 3c. We note that
WERM-ID-R significantly outperforms WERM-ID, and both significantly outperform Plug-in.

CPU Run Time. We show the CPU run time plots of WERM-ID-R versus Plug-in over increasing
D in Fig. 3d, 3e, 3f. The run time plots of WERM-ID always overlap with WERM-ID-R and are
therefore not shown. For each given D, we collect 100 run times and plot the median. We note that,
in all three experiments, the run time of Plug-in increases rapidly over D (due to the marginalization
over W ), while WERM-ID/WERM-ID-R scales well.

The reason for choosing the possibly naive, plug-in estimator as the baseline for comparison is
because it constitutes the only viable estimator known to date for arbitrary identifiable functionals.
Specifically, for Examples 2 and 3, we are not aware of any applicable estimators in the literature, and
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the only applicable one for Ex. 1 is CWO in [27], which is the same as WERM-ID for this example.
More experimental results over the three examples with varying D are given in Appendix D. The
results consistently show that the accuracy of WERM-based estimators are never worse, and mostly
superior, against the plug-in estimators. Also, WERM-ID-R usually performs better than WERM-ID.

6 Conclusion
This paper aims to fill the gap from causal identification to causal estimation. We developed a
learning framework that brings together the causal identification theory and powerful ERM methods.
In particular, we derived a sound and complete algorithm that produces causal functionals in the
form of weighted distributions that are amenable to ERM optimization. We proposed a learning
objective based on the WERM theory and provided a practical learning algorithm for estimating
causal effects from finite samples. The effectiveness of the proposed methods had been corroborated
with experimental studies. We hope that the conceptual framework and practical methods introduced
in this work can inspire future investigation in the ML and CI communities towards the development
of robust and efficient methods for learning causal effects in applied settings.
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