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Abstract

We study the problem of identifying the best action in a sequential decision-making
setting when the reward distributions of the arms exhibit a non-trivial dependence
structure, which is governed by the underlying causal model of the domain where
the agent is deployed. In this setting, playing an arm corresponds to intervening
on a set of variables and setting them to specific values. In this paper, we first
note that whenever the underlying causal model is not taken into account during
the decision-making process, the standard strategies of simultaneously intervening
on all variables or on all the subsets of the variables may, in general, lead to
suboptimal policies, regardless of the number of interventions performed in the
environment. In order to explain this phenomenon, we investigate a number of
structural properties implied by the underlying (possibly unobserved) causal model,
which include a complete characterization of the relationships between the arms’
distributions. We then propose an efficient strategy that takes as input a causal
structure and finds a minimal, sound, and complete set of qualified arms that an
agent should play to maximize its expected reward. We empirically demonstrate
that the new strategy learns an optimal policy and leads to orders of magnitude
faster convergence rates when compared with its causal-insensitive counterparts.

1 Introduction

The multi-armed bandit (MAB) problem is one of the prototypical settings studied in the sequential
decision-making literature [Lai and Robbins, 1985, Even-Dar et al., 2006, Bubeck and Cesa-Bianchi,
2012]. In this setting, an agent pulls an arm and receives a corresponding reward at each time step,
while its goal is to maximize the cumulative reward in the long run. The challenge is the inherent
trade-off between exploiting known arms versus exploring new reward opportunities [Sutton and
Barto, 1998, Szepesvári, 2010]. There is a wide range of assumptions underlying MABs, but in
most of the traditional settings, the arms’ rewards are assumed to be independent, which means
that knowing the reward distribution of one arm has no implication to the reward of the other arms.
Many strategies were developed to solve this problem, including classic algorithms such as ε-greedy,
variants of UCB (Auer et al., 2002, Cappé et al., 2013), and Thompson sampling [Thompson, 1933].

Recently, the existence of some non-trivial dependencies among arms has been acknowledged in
the literature and studied under the rubric of structured bandits, which include settings such as
linear [Dani et al., 2008], combinatorial [Cesa-Bianchi and Lugosi, 2012], unimodal [Combes and
Proutiere, 2014], and Lipschitz [Magureanu et al., 2014], just to name a few. For example, a linear (or
combinatorial) bandit imposes that an action xt ∈ Rd (or {0, 1}d) at a time step t incurs a cost `>t xt,
where `t is a loss vector chosen by, e.g., an adversary. In this case, an index-based MAB algorithm,
oblivious to the structural properties, can be suboptimal.

In another line of investigation, rich environments with complex dependency structures are modeled
explicitly through the use of causal graphs, where nodes represent decisions and outcome variables,
and direct edges represent direct influence of one variable on another [Pearl, 2000]. Despite the
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Figure 1: MAB problems as directed acyclic graphs where U is an unobserved variable. Plots of
cumulative regrets and probability selecting an optimal arm when a MAB algorithm intervenesX1 and
X2 simultaneously (All-at-once) or all subsets of {X1,X2} for IV-MAB. The IV-MAB is also used
in the experimental section (see Appendix D [Lee and Bareinboim, 2018] for its parametrization).

apparent connection between MABs and causality, only recently has the use of causal reasoning been
incorporated into the design of MAB algorithms. For instance, Bareinboim et al. [2015] explored the
connection between causal models with unobserved confounders (UCs) and reinforcement learning,
where the UCs affect both the reward distribution and the player’s intuition. The critical observation
leveraged in this work is that while standard MAB algorithms optimize based on the experimental
distribution (formally written as the do-distribution, P[Y |do(X)], and are dismissive about the UCs,
it’s possible to take the UCs into account through the use of other counterfactuals, in particular,
the quantity P[Yx|X = x′]. It was then showed that a counterfactual-based strategy dominates the
traditional ones and, therefore, should be preferred as the target of the optimization process whenever
UCs cannot be ruled out a priori. This strategy was later generalized to handle counterfactual
distributions of higher dimensionality by Forney et al. [2017]. Lattimore et al. [2016] and Sen
et al. [2017] studied the problem of best arm identification through importance weighting, where
information on how playing arms influences the direct causes (parents, in causal terminology) of a
reward variable is available. Zhang and Bareinboim [2017] noted that off-policy evaluation methods
can be arbitrarily biased and lead to linear regret whenever UCs are present. It was then shown how
causal bounds can be derived and used as prior of the arms’ distributions, which led to provably,
orders-of-magnitude more efficient off-policy evaluation. 1 Overall, these works showed different
aspects of a deeper phenomenon – the expected guarantees provided by standard methods are no
longer valid whenever UCs are present in the real world, which translates to an inability to converge
to any reasonable policy. They then showed that convergence can be restored once the causal structure
is acknowledged and used during the decision-making process.

In this paper, we focus on the challenge of identifying the best action in MABs where the arms
correspond to interventions on an arbitrary causal graph, including when UCs affect the observed
relations (also known in causal terminology as Semi-Markovian setting). To understand the subtlety
of this problem, we first note that a standard MAB can be seen as the simple causal model shown
in Fig. 1a, where X represents an arm (with K different values), Y the reward variable, and U the
unobserved variable that generates the randomness of Y .2 After a sufficiently large number of pulls
of X (chosen by the specific algorithm), Y ’s average reward can be determined with high confidence.

On the other hand, if UCs affect more than one observed variable, non-trivial challenges arise. To
witness, consider a more involved MAB structure shown in Fig. 1b, where an unobserved confounder
U affects both the action variable X1 and the reward Y . A naive approach for an algorithm to
play such a bandit would be to pull arms in a combinatorial manner, i.e., combining both variables
(X1×X2) so that arms are D(X1)×D(X2), where D(X) is the domain of X . One may surmise
that this is a valid strategy, albeit not the most efficient one. Somewhat unexpectedly, however,
Fig. 1c shows that this is not the case — the optimal action comes from pulling X2 and ignoring X1,
while pulling {X1,X2} together would lead to subpar cumulative rewards, regardless of the number
of interventions performed (see also Fig. 1d). After all, if one is oblivious to the causal structure,
dismissing the topological relation of X1 and X2, and decides to take all intervenable variables as
one (in this case, X1×X2), indiscriminately, he may be doomed to learn a suboptimal policy.

1On another line of investigation, Ortega and Braun [2014] introduced a generalized version of Thompson
sampling applied to the problem of adaptive control.

2In causal notation, Y ← fY (U ,X), which means that Y ’s value is determined by X and the realization of
the latent variable U . If fY is linear, we would have a (stochastic) linear bandit. Our results do not constrain the
types of structural functions, which is usually within nonparametric causal inference [Pearl, 2000, Ch. 7].
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In this paper, we investigate this phenomenon and, more broadly, causal MABs with non-trivial
dependency structure between the arms. Specifically, our contributions are as follows: (1) We
formulate a SCM-MAB problem that is a structured multi-armed bandit instance within the causal
framework. We then derive some key structural properties of a SCM-MAB, which are computable
from any causal model, including arms’ equivalence based on do-calculus and partial orderedness
among sets of variables associated with arms in regards to the maximum rewards achievable. (2)
We characterize a special set of variables called POMIS (possibly-optimal minimal intervention set),
which is worth intervening based on the aforementioned partial orders. We develop an algorithm that
identifies a complete set of POMISs so that only the subset of the arms associated with them can be
explored in a MAB instance. Simulations corroborate our findings.
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Figure 2: A bandit space with var-
ious dimensions (not all dimen-
sions are shown)

Big picture. The multi-armed bandit is a rich setting in which
a large number of variants has been proposed. Different aspects
of the decision-making process have been contemplated and suc-
cessfully analyzed in the last decades, which include a variety
of functional forms (e.g., linear, Lipschitz, Gaussian process),
different types of feedback (bandit, semi-bandit, full), the adver-
sarial or i.i.d. nature of the interactions, just to cite some of the
most popular ones. Our study of SCM-MABs puts the causal
dimension front and center in this landscape. In particular, we
fully acknowledge the existence of a causal structure among
the underlying variables (if not known a priori, see footnote 3),
and leverage the topological relations among them. This is in
clear contrast with the prevailing practice that, almost invariably,
is oblivious to the causal structure, implicitly assuming a non-
informative model such as the one shown in Fig. 1a. We draft
in Fig. 2 an initial map that shows the relationship between these qualitatively different dimensions.
Our goal is to start building some intuition about these class of problems (but neither exhaustive, nor
prescriptive). In particular, we study in the sequel bandits with no constraints over the underlying
functional form (non-parametric, in causality terminology), i.i.d. stochastic rewards, and with an
explicit causal structure available (or learnable) by the agent.

Preliminaries: notations and structural causal models

We follow the notation used in the causal inference literature. A capital letter is used for a variable
or a mathematical object. The domain of X is denoted by D (X). A bold capital letter is for a set
of variables, e.g., X = {Xi}ni=1, while a lowercase letter x ∈ D (X) is a value assigned to X , and
x ∈ D (X) = ×X∈X (D (X)). We denote by x [W], values of x corresponding to W ∩X. A graph
G = 〈V,E〉 is a pair of vertices V and edges E. We adopt family relationships — pa, ch, an, and
de to denote parents, children, ancestors, and descendants of a given variable; Pa, Ch, An, and De
extends pa, ch, an, and de by including the argument as the result, e.g., Pa (X)G = pa (X)G∪{X}.
With a set of variables as argument, pa (X)G =

⋃
X∈X pa (X)G and similarly defined for other

relations. We denote by V (G) the set of variables in G. G [V′] for V′ ⊆ V (G) is a vertex-induced
subgraph where all edges among V′ are preserved. We defineG\X asG [V (G) \X] for X ⊆ V (G).

We adopt the language of Structural Causal Models (SCM) [Pearl, 2000, Ch. 7]. An SCM M is a
tuple 〈U,V,F,P (U)〉, where U is a set of exogenous (unobserved or latent) variables and V is a
set of endogenous (observed) variables. F is a set of deterministic functions F = {fi}, where fi
determines the value of Vi ∈ V based on endogenous variables PAi ⊆ V\ {Vi} and exogenous
variables Ui ⊆ U, that is, e.g., vi ← fi(pai,u

i). P (U) is a joint distribution over the exogenous
variables. A causal diagramG = 〈V,E〉, associated withM , is a tuple of vertices V (the endogenous
variables) and edges E, where a directed edge Vi → Vj ∈ E if Vi ∈ PAj , and a bidirected edge
between Vi and Vj if they share an unobserved confounder, i.e., Ui ∩Uj 6= ∅. Note that pa(Vi)G
corresponds to PAi. Probability of Y = y when X is held fixed at x (i.e., intervened) is denoted by
P (y|do(x)), where intervention on X is graphically represented by GX, the graph G with incoming
edges onto X removed. We denote by CC (X)G the c-component of G that contains X where a
c-component is a maximal set of vertices connected with bidirected edges [Tian and Pearl, 2002]. We
define CC (X)G =

⋃
X∈X CC (X)G. For a more detailed discussion on the properties of SCMs, we

refer readers to [Pearl, 2000, Bareinboim and Pearl, 2016]. For all the proofs and appendices, please
refer to the full technical report [Lee and Bareinboim, 2018].
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Figure 3: (a–d) Causal graphs such that µx = µx,z , and (e) non-dominated arms

2 Multi-armed bandits with structural causal models

We recall that MABs consider a sequential decision-making setting where pulling one of the K
available arms at each round gives the player a stochastic reward from an unknown distribution
associated with the corresponding arm. The goal is to minimize (maximize) the cumulative regret
(reward) after T rounds. The mean reward of an arm a is denoted by µa and the maximal reward
is µ∗ = max1≤a≤K µa. We focus on the cumulative regret, RegT = Tµ∗ −

∑T
t=1 E [YAt

] =∑K
a=1 ∆aE [Ta (T )], where At is the arm played at time t, Ta (t) is the number of arm a has been

played after t rounds, and ∆a = µ∗ − µa.

We now can explicitly connect a MAB instance to its SCM counterpart. Let M be a SCM
〈U,V,F,P (U)〉 and Y ∈ V be a reward variable, where D (Y ) ⊆ R. The bandit contains
arms {x ∈ D (X) | X ⊆ V\{Y }}, a set of all possible interventions on endogenous variables except
the reward variable. Each arm Ax (or simply x) associates with a reward distribution P (Y |do(x))
where its mean reward µx is E [Y |do(x)]. We call this setting a SCM-MAB, which is fully rep-
resented by the pair 〈M ,Y 〉. Throughout this paper, we assume that the causal graph G of M is
fully accessible to the agent,3 although its parametrization is unknown: that is, an agent facing a
SCM-MAB 〈M ,Y 〉 plays arms with knowledge of G and Y , but not of F and P (U). For simplicity,
we denote information provided to an agent playing a SCM-MAB by JG,Y K. We now investigate
some key structural properties that follow from the causal structure G of the SCM-MAB.

Property 1. Equivalence among arms

We start by noting that do-calculus [Pearl, 1995] provides rules to evaluate invariances in the
interventional space. In particular, we focus here on the Rule 3, which ascertains the condition such
that a set of interventions does not have an effect on the outcome variable, i.e., P (y|do(x, z),w) =
P (y|do(x),w). Since arms correspond to interventions (including the null intervention) and there is
no contextual information, we consider examining P (y|do(x, z)) = P (y|do(x)) through Y ⊥⊥ Z | X
in GX∪Z, which implies µx,z = µx. If valid, this condition implies that it is sufficient to play only
one arm among arms in the equivalence class.

Definition 1 (Minimal Intervention Set (MIS)). A set of variables X ⊆ V\{Y } is said to be a
minimal intervention set relative to JG,Y K if there is no X′ ⊂ X such that µx[X′] = µx for every
SCM conforming to the G.

For instance, the MISs corresponding to the causal graphs in Fig. 3 are {∅, {X}, {Z}}, which do not
include {X,Z} since µx = µx,z . The MISs are determined without considering the UCs in a causal
graph. The empty set and all singletons in an (Y )G are MISs for G with respect to Y . The task of
finding the best arm among all possible arms can be reduced to a search within the MISs.

Proposition 1 (Minimality). A set of variables X ⊆ V\{Y } is a minimal intervention set for G
with respect to Y if and only if X ⊆ an (Y )GX

.

All the MISs given JG,Y K can be determined without explicitly enumerating 2V\{Y } while checking
the condition in Prop. 1. We provide an efficient recursive algorithm enumerating the complete set of
MISs given G and Y (Appendix A), which runs in O(mn2) where m is the number of MISs.

3In settings where this is not the case, one can spend the first interactions with the environment to learn the
causal graph G from observational [Spirtes et al., 2001] or experimental data [Kocaoglu et al., 2017].
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Property 2. Partial-orders among arms

We now explore the partial-orders among subsets of V\{Y } within the MISs. Given the causal
diagram G, it is possible that intervening on some variables is always as good as intervening on
another set of variables (regardless of the parametrization of the underlying model). Formally, there
can be two different sets of variables W,Z ⊆ V\{Y } such that

max
w∈D(W)

µw ≤ max
z∈D(Z)

µz

in every possible SCM conforming to G. If that is the case, it would be unnecessary (and possibly
harmful in terms of sample efficiency) to play arms D (W). We next define Possibly-Optimal MIS,
which incorporates the partial-orderedness among subsets of V\{Y } into MIS denoting the optimal
value for a X ⊆ V\{Y } given a SCM by x∗.

Definition 2 (Possibly-Optimal Minimal Intervention Set (POMIS)). Given information JG,Y K, let
X be a MIS. If there exists a SCM conforming to G such that µx∗ > ∀Z∈Z\{X}µz∗ , where Z is the
set of MISs with respect to G and Y , then X is a possibly-optimal minimal intervention set with
respect to the information JG,Y K.

Intuitively, one may believe that the best action will be to intervene on the direct causes (parents) of
the reward variable Y , since this would entail a higher degree of “controllability” of Y within the
system. This, in fact, holds true if Y is not confounded with any of its ancestors, which includes the
case where no unobserved confounders are present in the system (i.e., Markovian models).

Proposition 2. Given information JG,Y K, if Y is not confounded with an(Y )G via unobserved
confounders, then pa(Y )G is the only POMIS.

Corollary 3 (Markovian POMIS). Given JG,Y K, ifG is Markovian, then pa(Y )G is the only POMIS.

For instance, in Fig. 3a, {{X}} is the set of POMISs. Whenever unobserved confounders (UCs)
are present,4 on the other hand, the analysis becomes more involved. To witness, let us analyze
the maximum achievable rewards of the MISs in the other causal diagrams in Fig. 3. We start with
Fig. 3b and note that µz∗ ≤ µx∗ since µz∗ =

∑
x µxP (x|do(z∗)) ≤

∑
x µ
∗
xP (x|do(z∗)) = µx∗ .

On the other hand, µ∅ is not comparable to µx∗ . For a concrete example, consider a SCM where the
domains of variables are {0, 1}. Let U be the UC between Y and Z where P (U = 1) = 0.5. Let
fZ(u) = 1− u, fX(z) = z, and fY (x,u) = x⊕ u, where ⊕ is the exclusive-or function. If X is not
intervened on, x will be 1−u yielding y = 1 for both cases u = 0 or u = 1 so that µ∅ = 1. However,
if X is intervened to either 0 or 1, y will be 1 only half the time since P (U = 1) = 0.5, which results
in µx∗ = 0.5. We also provide a SCM in Appendix A such that µ∅ < µx∗ holds true. This model
(µ∅ > µx∗ ) illustrates an interesting phenomenon — allowing an UC to affect Y freely may lead to a
higher reward, which may be broken upon interventions. We now consider the different confounding
structure shown in Fig. 3c (similar to Fig. 1b), where the variable Z lies outside of the influence of
the UC associated with Y . In this case, intervening on Z leads to a higher reward, µz∗ ≥ µ∅. To
witness, note that µ∅ =

∑
z E [Y |z]P (z) =

∑
z µzP (z) ≤

∑
z µz∗P (z) = µz∗ . However, µz∗

and µx∗ are incomparable, which is shown through two models provided in Appendix A. Finally, we
can add the confounders of the two previous models, which is shown in Fig. 3d. In this case, all three
µx∗ , µz∗ , and µ∅ are incomparable. One can imagine scenarios where the influence of the UCs are
weak enough so that corresponding models produce results similar to Figs. 3a to 3c.

It’s clear that the interplay between the location of the intervened variable, the outcome variable, and
the UCs entails non-trivial interactions and consequences in terms of the reward. The table in Fig. 3e
highlights the arms that are contenders to generate the highest rewards in each model (i.e., each arm
intervenes a POMIS to specific values), while intervening on a non-POMIS represents a waste of
resources. Interestingly, the only parent of Y , i.e., X , is not dominated by any other arms in any of
the scenarios discussed. In words, this suggests that the intuition that controlling variables closer to
Y is not entirely lost even when UCs are present; they are not the only POMIS, but certainly one of
them. Given that more complex mechanisms cannot be, in general, ruled out, performing experiments
would be required to identify the best arm. Still, the results of the table guarantee that the search
can be refined so that MAB solvers can discard arms that cannot lead to profitable outcomes, and
converge faster to playing the optimal arm.

4Recall that unobserved confounders are represented in the graph as bidirected dashed edges.
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Figure 4: Causal graphs where pink and blue nodes are MUCT and IB, respectively. (Right most) A
schematic showing an exploration order of subsets of variables.

3 Graphical characterization of POMIS

Our goal in this section is to graphically characterize POMISs. We will leverage the discussion in
the previous section and note that UCs connected to a reward variable affect the reward distributions
in a way that intervening on a variable outside the coverage of such UCs (including no UC) can
be optimal — e.g., {X} for Fig. 3a, ∅ for Figs. 3b and 3d, and {Z} for Fig. 3c. We introduce two
graphical concepts to help characterizing this property.
Definition 3 (Unobserved-Confounders’ Territory). Given information JG,Y K, let H be
G [An (Y )G]. A set of variables T ⊆ V (H) containing Y is called an UC-territory on G with
respect to Y if De (T)H = T and CC (T)H = T.

An UC-territory T is said to be minimal if no T′ ⊂ T is an UC-territory. A minimal UC-Territory
(MUCT) for G and Y can be constructed by extending a set of variables, starting from {Y }, alterna-
tively updating the set with the c-component and descendants of the set.
Definition 4 (Interventional Border). Let T be a minimal UC-territory on G with respect to Y . Then,
X = pa (T)G \T is called an interventional border for G with respect to Y .

The interventional border (IB) encompasses essentially the parents of the MUCT. For concreteness,
consider Fig. 4a, and note that {W ,X,Y ,Z} is the MUCT for the causal graph with respect to Y ,
and the IB is {S,T} (marked in pink and blue in the graph, respectively). As its name suggests,
MUCT is a set of endogenous variables governed by a set of UCs where at least one UC is adjacent
to a reward variable. Specifically, the reward is determined by values of: (1) the UCs governing the
MUCT; (2) a set of unobserved variables (other than the UCs) where each affects an endogenous
variable in the MUCT; and (3) the IB. In other words, there is no UC interplaying across MUCT and
its outside so that µx = E[Y |x] where x is a value assigned to the IB X. We now connect MUCT and
IB with POMIS. Let MUCT(G,Y ) and IB(G,Y ) be, respectively, the MUCT and IB given JG,Y K.
Proposition 4. IB(G,Y ) is a POMIS given JG,Y K.

The main strategy of the proof is to construct a SCM M where intervening on any variable in
MUCT(G,Y ) causes significant loss of reward. It seems that MUCT and IB can only identify a
single POMIS given JG,Y K. However, they, in fact, serve as basic units to identify all POMISs.
Proposition 5. Given JG,Y K, IB(GW,Y ) is a POMIS, for any W ⊆ V\ {Y }.

Prop. 5 generalizes Prop. 4 for when W 6= ∅ while taking care of UCs across MUCT(GW,Y ), and
its outside in the original causal graph G. See Fig. 4d, for an instance, where IB(GW ,Y ) = {W ,T}.
Intervening on W cuts the influence of S and the UC between W and X , while still allowing
the UC to affect X .5 Similarly, one can see in Fig. 4b that IB(GX ,Y ) = {T ,W ,X} where
intervening on X lets Y be the only element of MUCT making its parents an interventional border,
hence, a POMIS. Note that pa(Y )G is always a POMIS since MUCT(G

pa(Y )G
,Y ) = {Y } and

IB(G
pa(Y )G

,Y ) = pa(Y )G. With Prop. 5, one can enumerate the POMISs given JG,Y K considering
all subsets of V\ {Y }. We show in the sequel that this strategy encompasses all the POMISs.
Theorem 6. Given JG,Y K, X ⊆ V\{Y } is a POMIS if and only if IB(GX,Y ) = X.

5Note that exogenous variables that do not affect more than one endogenous variable (i.e., non-UCs) are not
explicitly represented in the graph.
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Algorithm 1 Algorithm enumerating all POMISs with JG,Y K
1: function POMISS(G, Y )
2: T,X = MUCT (G,Y ) , IB (G,Y ); H = GX [T ∪X]
3: return {X} ∪ subPOMISs (H, Y , reversed (topological-sort (H)) ∩ (T \ {Y }) , ∅)
4: function SUBPOMISS(G, Y , π, O)
5: P = ∅
6: for πi ∈ π do
7: T, X, π′, O′ = MUCT(Gπi ,Y ), IB(Gπi ,Y ), πi+1:|π| ∩T, O ∪ π1:i−1

8: if X ∩O′ = ∅ then
9: P = P ∪ {X} ∪ (subPOMISs (GX [T ∪X] , Y , π′, O′) if π′ 6= ∅ else ∅)

10: return P

Algorithm 2 POMIS-based kl-UCB
1: function POMIS-KL-UCB(B,G,Y , f ,T )
2: Input: B, a SCM-MAB, G, a causal diagram; Y , a reward variable
3: A =

⋃
X∈POMISs(G, Y )D(X)

4: kl-UCB(B, A, f , T )

Thm. 6 provides a graphical necessary and sufficient condition for a set of variables being a POMIS
given JG,Y K. This characterization allows one to determine all possible arms in a SCM-MAB that
are worth intervening on, and, therefore, being free from pulling the other unnecessary arms.

4 Algorithmic characterization of POMIS

Although the graphical characterization provides a means to enumerate the complete set of POMISs
given JG,Y K, a naively implemented algorithm requires time exponential in |V|. We construct an
efficient algorithm (Alg. 1) that enumerates all the POMISs based on Props. 7 and 8 below and the
graphical characterization introduced in the previous section (Thm. 6).
Proposition 7. Let T and X be the MUCT(GW,Y ) and IB(GW,Y ), respectively, relative to G
and Y . Then, for any Z ⊆ V\T, MUCT(GX∪Z,Y ) = T and IB(GX∪Z,Y ) = X.

Proposition 8. LetH=GX [T ∪X] where T and X are MUCT and IB given JGW,Y K, respectively.
Then, for any W′ ⊆ T\ {Y }, HW′ and GW∪W′ yield the same MUCT and IB with respect to Y .

Prop. 7 allows one to avoid having to examine GW for every W ⊆ V\{Y }. Prop. 8 characterizes
the recursive nature of MUCT and IB, where identification of POMISs can be evaluated by subgraphs.
Based on these results, we design a recursive algorithm (Alg. 1) to explore subsets of V\{Y } with
a certain order. See Fig. 4e for an example where subsets of {X,Z,W} are connected based on
set inclusion relationship and an order of variables, e.g., (X,Z,W ). That is, there exists a directed
edge between two sets if (i) one set is larger than the other by a variable and (ii) the variable’s index
(as in the order) is larger than other variable’s index in the smaller set. The diagram traces how the
algorithm will explore the subsets following the edges, while effectively skipping nodes.

Given G and Y , POMISs (Alg. 1) computes a POMIS, i.e., IB(G,Y ). Then, a recursive procedure
subPOMISs is called with an order of variables (Line 3). Then subPOMISs examines POMISs by
intervening on a single variable against the given graph (Line 6–9). If the IB (X in Line 7) of such an
intervened graph intersects with O′ (a set of variables that should be considered in other branch),
then no subsequent call is made (Line 8). Otherwise, a subsequent subPOMISs call will take as
arguments an MUCT-IB induced subgraph (Prop. 8), a refined order, and a set of variables not to be
intervened in the given branch. For clarity, we provide a detailed working example in Appendix C
with Fig. 4a where the algorithm explores only four intervened graphs (G, G{X}, G{Z}, G{W}) and
generates the complete set of POMISs {{S,T}, {T ,W}, {T ,W ,X}}.
Theorem 9 (Soundness and Completeness). Given information JG,Y K, the algorithm POMISs
(Alg. 1) returns all, and only POMISs.

The POMISs algorithm can be combined with a MAB algorithm, such as the kl-UCB, creating
a simple yet effective SCM-MAB solver (see Alg. 2). kl-UCB satisfies lim supn→∞

E[Regn]
log(n) ≤

7



0

25

50

75

C
um

.
R

eg
re

ts

0

50

100

0

500

1000

1500

0 250 500 750 1000
Trials

0.0

0.5

1.0

P
ro

ba
bi

lit
y POMIS

MIS
Brute-force
All-at-once

0 250 500 750 1000
Trials

0 2500 5000 7500 10000
Trials

(a) Task 1 (b) Task 2 (c) Task 3

Figure 5: Comparisons across tasks (columns) with cumulative regrets (top) and optimal arm selection
probability (bottom) with TS for solid and kl-UCB for dashed lines. Best viewed in color.

∑
x:µx<µ∗

µ∗−µx

KL(µx,µ∗)
where KL is Kullback-Leibler divergence between two Bernoulli distributions

[Garivier and Cappé, 2011]. It is clear that the reduction in the size of arms will lower the upper
bounds of the corresponding cumulative regrets.

5 Experiments

In this section, we present empirical results demonstrating that the selection of arms based on
POMISs makes standard MAB solvers converge faster to an optimal arm. We employ two popular
MAB solvers, kl-UCB, which enjoys cumulative regret growing logarithmically with the number
of rounds [Cappé et al., 2013], and Thompson sampling (TS, Thompson [1933]), which has strong
empirical performance [Kaufmann et al., 2012]. We considered four strategies for selecting arms,
including POMISs, MISs, Brute-force, and All-at-once, where Brute-force evaluates all combinations
of arms

⋃
X⊆V\{Y }D (X), and All-at-once considers intervening in all variables simultaneously,

D (V\{Y }), oblivious to the causal structure and any knowledge about the action space. The
performance of the eight (4 × 2) algorithms are evaluated relative to three different SCM-MAB
instances (the detailed parametrizations are provided in Appendix D). We set the horizon large enough
so as to observe near convergence, and repeat each simulation 300 times. We plot (i) the average
cumulative regrets (CR) along with their respective standard deviations and (ii) the probability of an
optimal arm being selected averaged over the repeated tests (OAP).6,7

Task 1: We start by analyzing a Markovian model. We note that by Cor. 3, searching for the arms
within the parent set is sufficient in this case. The number of arms for POMISs, MISs, Brute-force,
and All-at-once are 4, 49, 81, and 16, respectively. Note that there are 4 optimal arms within
All-at-once arms — for instance, if the parent configuration is X1 = x1,X2 = x2, this strategy
will also include combinations of Z1 = z1,Z2 = z2,∀z1, z2. The simulated results are shown in
Fig. 5a. CR at round 1000 with kl-UCB are 3.0, 48.0, 72, and 12 (in the order), and all strategies
were able to find the optimal arms at this time. POMIS and All-at-once first reached 95% OAP
at round 20 and 66, respectively. There are two interesting observations at this point. First, at an

6All the code is available at https://github.com/sanghack81/SCMMAB-NIPS2018
7One may surmise that combinatorial bandit (CB) algorithms can be used to solve SCM-MAB instances by

noting that an intervention can be encoded as a binary vector, where each dimension in the vector corresponds
to intervening on a single variable with a specific value. However, the two settings invoke a very different set
of assumptions, which makes their solvers somewhat difficult to compare in some reasonably fair way. For
instance, the current generation of CB algorithms is oblivious to the underlying causal structure, which makes
them resemble very closely the Brute-force strategy, the worst possible method for SCM-MABs. Further, the
assumption of linearity is arguably one of the most popular considered by CB solvers. The corresponding
algorithms, however, will be unable to learn the arms’ rewards properly since a SCM-MAB is nonparametric,
making no assumption about the underlying structural mechanisms. These are just a few immediate examples of
the mismatches between the current generation of algorithms for both causal and combinatorial bandits.
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early stage, OAP for MISs is smaller than Brute-force since it has only 1 optimal arm among 49
arms, while Brute-force has 9 among 81. The advantage of employing MIS over Brute-force is only
observed after a sufficiently large number of plays. More interestingly, POMIS and All-at-once both
have the common optimal to non-optimal arms-ratio (1:3 versus 4:12), however, POMIS dominates
All-at-once since the agent can learn better about the mean reward of the optimal arm while playing
non-optimal arms less. Naturally, this translates into less variability and additional certainty about the
optimal arm even in Markovian settings.

Task 2: We consider the setting known as instrumental variable (IV), which was shown in Fig. 3c.
The optimal arm in this simulation is setting Z = 0. The number of arms for the four strategies is 4, 5,
9, and 4, respectively. The results are shown in Fig. 5b. Since the All-at-once strategy only considers
non-optimal arms (i.e., pulling Z,X together), it incurs in a linear regret without selecting an optimal
arm (0%). CR (and OAP) at round 1000 with TS are POMIS 16.1 (98.67%), MIS 21.4 (99.00%),
Brute-force 42.9 (93.33%), and All-at-once 272.1 (0%). At round 5000, where Brute-force nearly
converged, the ratio of CRs for POMIS and Brute-force is 54.2

18.1 = 2.99 ' 2.67 = 9−1
4−1 . POMIS, MIS,

and Brute-force first hits 95% OAP at 172, 214, and 435.

Task 3: Finally, we study the more involved scenario shown in Fig. 4a. In this case, the optimal
arm is intervening on {S,T}, which means that the system should follow its natural flow of UCs,
which All-at-once is unable to “pull.” There are 16, 75, 243, and 32 arms for the strategies (in the
order). The results are shown in Fig. 5c. The CR (and OAP) at round 10000 with TS are POMIS 91.4
(99.0%), MIS 472.4 (97.0%), Brute-force 1469.0 (85.0%), and All-at-once 2784.8 (0%). Similarly,
the ratio (in round 10000) is 1469.0

91.4 = 16.07 ≈ 16.13 = 243−1
16−1 which is expected to increase since

Brute-force is not yet converged at the moment. Only POMIS and MIS achieved OAP of 95% first in
684 and 3544 steps, respectively.

We start by noticing that the reduction in the CRs is approximately proportional to the reduction in the
number of non-optimal arms pulled by (PO)MIS by the corresponding algorithm, which makes the
POMIS-based solver the clear winner throughout the simulations. It’s still not inconceivable that the
number of arms examined by All-at-once is smaller than for POMIS in a specific SCM-MAB instance,
which would entail a lower CR to the former. However, such a lower CR in some instances does
not constitute any sort of assurance since arms excluded from All-at-once, but included in POMIS,
can be optimal in some SCM-MAB instance conforming to JG,Y K. Furthermore, a POMIS-based
strategy always dominates the corresponding MIS and Brute-force ones. These observations together
suggest that, in practice, a POMIS-based strategy should be preferred given that it will always
converge and will usually be faster than its counterparts. Remarkably, there is an interesting trade-off
between having knowledge of the causal structure versus not knowing the corresponding dependency
structure among arms, and potentially incurring in linear regret (All-at-once) or exponential slow-
down (Brute-force). In practice, for the cases in which the causal structure is unknown, the pull of
the arms themselves can be used as experiments and could be coupled with efficient strategies to
simultaneously learn the causal structure [Kocaoglu et al., 2017].

6 Conclusions

We studied the problem of deciding whether an agent should perform a causal intervention and, if so,
which variables it should intervene upon. The problem was formalized using the logic of structural
causal models (SCMs) and formalized through a new type of multi-armed bandit called SCM-MABs.
We started by noting that whenever the agent cannot measure all the variables in the environment (i.e.,
unobserved confounders exist), standard MAB algorithms that are oblivious to the underlying causal
structure may not converge, regardless of the number of interventions performed in the environment.
(We note that the causal structure can easily be learned in a typical MAB setting since the agent always
has interventional capabilities.) We introduced a novel decision-making strategy based on properties
following the do-calculus, which allowed the removal of redundant arms, and the partial-orders
among the sets of variables existent in the underlying causal system, which led to the understanding
of the maximum achievable reward of each interventional set. Leveraging this new strategy based
on the possibly-optimal minimal intervention sets (called POMIS), we developed an algorithm that
decides whether (and if so, where) interventions should be performed in the underlying system.
Finally, we showed by simulations that this causally-sensible strategy performs more efficiently and
more robustly than their non-causal counterparts. We hope that formal machinery and the algorithms
developed here can help decision-makers to make more principled and efficient decisions.
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Supplementary Material – “Structural
Causal Bandits: Where to Intervene?”
Appendix A Multi-armed bandits with structural causal models

Proposition 1 (Minimality). A set of variables X ⊆ V\{Y } is a minimal intervention set for G
with respect to Y if and only if X ⊆ an (Y )GX

.

Proof. (If) Assume that there exists X′ ⊂ X such that µx′ = µx with x′ = x [X′] so that X is not
minimal. Create a SCM with all variables real-valued, where each variable Vi ∈ V associates with
its own binary exogenous variable P (ui = 1) = 0.5. Let the function of an endogenous variable be
the sum of values of its parents. For the sake of contradiction assume that X ⊆ an(Y )GX

. Then,
there exists directed paths from X \ X′ to Y without passing X′. Hence, setting W = X \ X′
to E[w|do(x′)] + 1 will yield a larger outcome, i.e., µw,x′ > µx′ , breaking the equality, which
contradicts the assumption.

(Only if) Let X 6⊆ an(Y )GX
. Let Z = X \ an (Y )GX

, which is a nonempty set and X′ = X \ Z.
By Rule 3 of do-calculus, µx′,z = µx′ , which violates the definition of MIS.

We present an algorithm (Alg. 3) for enumerating all the MISs given a causal diagram G and a reward
variable Y . The algorithm builds a set of MISs by adding a variable to a previously obtained MIS so
that the resulting set is a MIS.

Algorithm 3 Minimal Intervention Set Enumeration
1: function MISs(G,Y )
2: Input: G a causal diagram; Y an outcome variable
3: H = G [An (Y )G]
4: return subMISs (H, Y , ∅, reversed (topological-sort (H)) ∩ {V\{Y }})

5: function subMISs(G, Y , X, W)
6: X = {X}
7: for Wi ∈W do
8: H = GWi

[An(Y )GWi
]

9: X = X ∪ subMISs(H, Y , X ∪ {Wi}, Wi+1: ∩V(H))

10: return X

We prove Prop. 2 below with the following observation — given two different MISs X and Z,
if µx∗ ≤ µz∗ for every SCM conforming to a given causal diagram G, then there exists a SCM
µx∗ < µz∗ .
Proposition 2. Given information JG,Y K, if Y is not confounded with an(Y )G via unobserved
confounders, then pa(Y )G is the only POMIS.

Proof. Let X be a MIS. Let X′ = X \ pa(Y )G and Z = pa(Y )G \X.

µx =
∑
z

E[Y | do(x), z]P (z|do(x))

=
∑
z

E[Y | do(x, z)]P (z|do(x)) ∵ Rule 2

=
∑
z

E[Y | do(x[pa(Y )G], z)]P (z|do(x))

≤
∑
z

µpa∗Y
P (z|do(x))

= µpa∗Y

10



We describe two models for Fig. 3b showing µ∅ > µx∗ and µ∅ < µx∗ , respectively. Let ⊕ represent
the exclusive-or function.

• µ∅ > µx∗ : Let the domains of U ,X , and Z be {0, 1} and let 0 < P (U = 1) = α < 1. F consists
of fZ (u) = 1 − u, fX (z) = z, and fY (z,u) = z ⊕ u. Then, µx∗ = µz∗ = max (α, 1− α),
which is smaller than µ∅ = 1:

µz∗ =
∑
u,x,y

y · P (y|x,u)P (x|z∗)P (u)

=
∑
u,x

P (y = 1|x,u)P (x|z∗)P (u)

=
∑
u

P (y = 1|X = z∗,u)P (u)

= αP (y = 1|X = z∗, 1) + (1− α)P (y = 1|X = z∗, 0)

= αδz∗,0 + (1− α) δz∗,1
= max (α, 1− α)

Since µ∅ = 1, observation is strictly better than intervening on either Z or X .
• µ∅ < µx∗ : Changing fY (x,u) to x+ u, we observe µx∗ = µz∗ = 1 + α > µ∅ = 1.

Deterministic relations can be modified to a probabilistic one by introducing binary unobserved
variables UX , UY , and UZ and modifying functions for X , Y , and Z to exclusive-or with UX , UY ,
and UZ , respectively. By setting probability of them being 1 small enough, one can keep the orders
µ∅ > µx∗ or µ∅ < µx∗ .

We devise two models where µz∗ > µx∗ and µz∗ < µx∗ , respectively, for Fig. 3c. Let UX , UY ,
and UZ be variable-specific exogenous variables affecting X , Y , and Z, respectively. Let U be the
unobserved confounder between X and Y .

• µz∗ > µx∗ : Let P (U = 1) = 0.5 with ∀UV ∈{UX ,UY ,UZ}P (UV = 1) = ε ≈ 0. Let
fY (x,u,uY ) = x ⊕ (1 − u) ⊕ uY , fX(z,u,uX) = z ⊕ uX ⊕ u, and fZ(uZ) = uZ . Then,
µx = (1 − ε) · P (UX = 1 − x) + ε · P (UX = x) ≈ P (UX = 1 − x) = 0.5 while
µz∗ = 1− 2ε+ ε2 ≈ 1.
• µz∗ < µx∗ : Let probabilities of exogenous variables being 1 be 0.5. Let fY (x,u,uY ) =
x+u+uY , fX(z,u,uX) = z⊕uX ⊕u, and fZ(uZ) = uZ . Then, µx = x+ 0.5 + 0.5 = x+ 1
and µz = P (x = 1|do(z)) + 0.5 + 0.5. Therefore, µz∗ = 1.5 < 2 = µx∗ .

Appendix B Graphical characterization of POMIS

We present an algorithm (Alg. 4) retrieving a MUCT given JG,Y K.

Algorithm 4 Minimal Unobserved Confounders’ Territory
1: function MUCT(G,Y )
2: H = G [An (Y )G]
3: Q = {Y }; T = {Y }
4: while Q 6= ∅ do
5: remove an element Q1 from Q
6: W = CC (Q1)H ; T = T ∪W; Q = (Q ∪ de (W)H) \T
7: return T

The following proposition and corollary will be used partly to prove propositions and theorems in the
main text.
Proposition 10 (Subsumption). Let T and X be the MUCT and IB for G with respect to Y , respec-
tively. Then, for any Z ⊆ V \ {Y }, µs∗ ≥ µz∗ where S = (T ∩ Z) ∪X.

11
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Figure 6: A causal diagram and colored graphs for unobserved confounders.

Proof. (Case Z ⊇ X) By definition of IB and Rule 3 of do-calculus, µz∗ = E [Y |do(z∗ [T ∪X])].
Since Z ∩ (T ∪X) = S, µz∗ = µs∗ .

(Otherwise) Let X′ = X \ Z. Then,

µz∗ =
∑
x′

E [Y |do(z∗),x′]P (x′|do(z∗))

The first term becomes

E [Y |do(z∗),x′] = E [Y |do(z∗), do(x′)] ∵ Rule 2 (Y ⊥⊥ X′ | Z)GZX′

= E [Y |do(z∗ [T ∪X]), do(x′)] ∵ Rule 3

≤ µs∗ ∵ (Z ∩ (T ∪X)) ∪X′ = S

Finally, µz∗ ≤ µs∗ because
∑

x′ µs∗P (x′|do(z∗)) = µs∗ .

Corollary 11. Given JG,Y K, no POMIS intersects with an (X)G \X where X = IB(G,Y ).

The proposition says that rewards of arms related to intervening on Z cannot be better than intervening
on Z and the border X together. Further, since intervening outside of the territory and the border is
ineffective, one can intervene only Z that are inside the territory altogether with the border.
Proposition 4. IB(G,Y ) is a POMIS given JG,Y K.

Proof. Let X be IB(G,Y ). In this proof, every unobserved variables U is a binary variable with
its domain being {0, 1}. An easy case is when T = {Y } where X is the parents of Y in G. We
construct a SCM such that

1. Each endogenous variable V associates with an unobserved variable UV ;

2. fY = 1− (
∨
uY ⊕ (

∨
x)) with P (uY = 0) ≈ 1;

3. fV = (
⊕

uV )⊕ (
⊕

paV ) for V ∈ V \ {Y } with P (uj) = 0.5 for every Uj ∈ U \UY .

Then, E[Y |do(X = 0)] = P (uY = 0) ≈ 1 while all others yield expectations less than or equal to
0.5, otherwise.

Now, we consider a general case where T ⊃ {Y }, that is, there exists at least one unobserved
confounder between Y and its ancestors. As a first step, we prove the existence of a SCM M ,
conforming to H = G [T ∪X], which yields the maximum outcome only through do(X = 0). To do
so, we construct a SCM for each unobserved confounder in H [T]. Let U′ = {Uj}mj=1 be unobserved
confounders in H[T]. Then, those m individual SCMs {Mi}mi=1 will be integrated into a single SCM
M so that any intervention other than x = 0 negatively affects the outcome of Y .

We proceed to describe Mi for Ui ∈ U′. Let B(i) and R(i) be two children of Ui. Let

Hi = H
[
De
({
B(i),R(i)

})
H
∪
(
X ∩ pa

(
De
({
B(i),R(i)

})
H

))]
with all bidirected edges removed except Ui. Functions for variables in H[T] will be described below.
We label (i.e., color code) vertices inDe

(
B(i)

)
H
\De

(
R(i)

)
H

as blue andDe
(
R(i)

)
H
\De

(
B(i)

)
H
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M1 M2 M

U1 U2 w(1) x(1) y(1) z(2) x(1) y(1) w z x y′ y

0 0 1 0 2 0 0 2 00 01 00 00 00 00 10 10 1
1 1 1 1 01 00 01 00 01 10

1 0 0 1 1 0 0 2 00 00 00 00 00 01 10 01
1 1 1 1 01 00 01 01 01 01

Table 1: Values with s = t = 0 where values for M are shown as binary. y′ represents 4y(2) + y(1)

before the value is binarized.

as red, and De
(
B(i)

)
H
∩De

(
R(i)

)
H

as purple. Each of B(i) and R(i) perceives that Ui is a parent
colored as blue with value ui and red with value 1−ui, respectively. Those blue, red, purple variables
are assigned 3 if any of their parents in X is not 0. Otherwise, their values are determined as follows.
For every blue and red vertex, its corresponding function returns the common value of its parents of
the same color and returns 3 if colored parents’ values are not homogeneous. For every purple vertex,
its corresponding function returns 2 if every blue, red, and purple parent is 0, 1, and 2, respectively,
and returns 1 if 1, 0, and 1, respectively. For other cases, the function returns 3. One can view the
value 3 as a parity propagated to Y .

Now, we integrate m SCMs into one. In Mi, two bits are sufficient to represent every variable. Then,
we build a unified SCM where each variable in T is represented with 2m bits where a SCM for Ui
will take 2i− 1th and 2ith bit (n.b. the right most digit representing 20 = 1 corresponds to the first
bit). We then binarize Y by setting 1 if 2i− 1th and 2ith bits are 01 or 10 for every 1 ≤ i ≤ m and 0
otherwise. Let P (ui = 1) = 0.5 for Ui ∈ U′. This unified SCM M provides a core mechanism to
output Y = 1 if do(X = 0) and Y = 0 if do(X 6= 0). If any of variable in T is intervened, then at
least one sub-SCM among m sub-SCMs will be disrupted yielding an expectation smaller than or
equal to 0.5.

We now extend the core SCM forH[T∪X] to a SCM forG. However, we can ignore joint probability
distributions for any exogenous variables only affecting endogenous variables the outside of H . In
addition, functions for endogenous variables lying outside H is irrelevant to the reward distribution.
We define a function for V ∈ An(Y )G \T and joint distributions for unobserved variables except
U′. Let fV =

⊕
uV ⊕

⊕
paV and P (ui = 0) = 0.5 for Ui ∈ U whose child(ren) disjoint to

T and P (uj = 0) ≈ 1 for Uj ∈ U whose child(ren) intersects with T. This ensures that the core
mechanism will only be randomly disturbed with a small probability close to 0 preserving the best
arm being do(X = 0).

We provide an example in Fig. 6 illustrating how sub-SCMs are constructed. Further, values of
variables for M1, M2 and a unified M are shown in Table 1 with s = t = 0.

Proposition 5. Given JG,Y K, IB(GW,Y ) is a POMIS, for any W ⊆ V\ {Y }.

Proof. Let T = MUCT(GW,Y ), X = IB(GW,Y ), and T0 = MUCT(G,Y ). We adopt the
strategy used in Prop. 4 where a SCM is constructed so that an optimal arm is do(IB(G,Y ) = 0). We
first similarly build a SCM for G [T ∪X] while ignoring, for now, dangling unobserved confounders
between T and T0 \ T. Let U′ be such unobserved confounders. Then, we modify the SCM so
that a dangling unobserved confounder Ui ∈ U′ flips (i.e., 0↔ 1) the value of its endogenous child
in T when ui = 1. Let P (u′ 6= 0) be close to 0 so that E [Y |do(X = 0)] is close to 1. However,
intervening on X 6= 0 or on Z where Z ∩T 6= ∅ will make corresponding expectations around 0.5 or
below.

Theorem 6. Given JG,Y K, X ⊆ V\{Y } is a POMIS if and only if IB(GX,Y ) = X.

Proof. (If part) A special case of Prop. 5 where W = X.

(Only if part) Let W ⊆ V \ {Y }. Let T and X be MUCT(GW,Y ) and IB(GW,Y ) and T0 and X0

be MUCT(G,Y ) and IB(G,Y ), respectively. We will prove that W is not a POMIS when W 6= X.
We can limit W ⊆ X0 ∪T0 \ {Y } due to Prop. 10. Let X′ = X \W. First, we can observe that
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W ⊆ An (X)G since otherwise W ∩T 6= ∅, which contradicts that W is neither a descendant of
some variable nor confounded in GW. Then,

µw∗ =
∑
x′

E [Y |do(w∗),x′]P (x′|do(w∗)) ∵ Basic algebra

=
∑
x′

E [Y |do(w∗), do(x′)]P (x′|do(w∗)) ∵ Rule 2 (Y ⊥⊥ X′ |W)GWX′

=
∑
x′

E [Y |do (w∗ [X]) , do(x′)]P (x′|do(w∗)) ∵ Rule 3 (Y ⊥⊥ (W \X) | X)G
X,W\X

≤
∑
x′

µx∗P (x′|do(w∗))

= µx∗

Therefore, W is not a POMIS.

Appendix C Algorithmic characterization of POMIS

Proposition 7. Let T and X be the MUCT(GW,Y ) and IB(GW,Y ), respectively, relative to G
and Y . Then, for any Z ⊆ V\T, MUCT(GX∪Z,Y ) = T and IB(GX∪Z,Y ) = X.

Proof. Given that T is a MUCT for G being intervened on X, additional intervention outside T does
not affect T being the MUCT and X being the IB.

Proposition 8. LetH=GX [T ∪X] where T and X are MUCT and IB given JGW,Y K, respectively.
Then, for any W′ ⊆ T\ {Y }, HW′ and GW∪W′ yield the same MUCT and IB with respect to Y .

Proof. GW∪W′ and HW′ share the same edges among T ∪X except the fact that X has no parent
in HW′ , which is irrelevant to identifying MUCT T and IB X in both diagrams.

Proposition 12. If W is a POMIS, for any W′ ⊂W, W \W′ ⊂ MUCT(GW′ ,Y )∪ IB(GW′ ,Y ).

Proof. Otherwise, W is not a MIS since intervening on IB(GW′ ,Y ) is preferred to intervening on
W.

We illustrate how the algorithm works with a causal graphG in Fig. 4a. The graph and its manipulated
graphs are shown in Fig. 4. Given G and Y , POMISs obtains a MUCT-and-IB induced subgraph
with the IB intervened, G{S,T}[{W ,X,Y ,Z} ∪ {S,T}] (Line 2), which is the same as G in this
example. While recording the first POMIS, the IB for G∅, POMISs calls subPOMISs (Line 3) with
(Y ,X,Z,T ,W ,S) ∩ {W ,X,Z} = (X,Z,W ) for the parameter π assuming (Y ,X,Z,T ,W ,S)
is acquired among many reversed topological orders of H (Line 3). This corresponds to requesting
subPOMISs to compute the IBs for the passed causal graph with each variable in (X,Z,W )
intervened (Lines 6–10). With GX , its corresponding MUCT and IB are {Y } and {T ,W ,X}
(Fig. 4b). The IB will be recorded as a POMIS (Line 9) but no subsequent call for subPOMISs
will be made since (X,Z,W )i+1: ∩ {Y } = ∅. Given GZ , the same set of MUCT and IB is
obtained as GX (Fig. 4c). It is unnecessary to record the IB {T ,W ,X} since it contains X , which
precedes Z in the given order (Line 7, 8). The MUCT and IB given GW are {X,Y ,Z} and {T ,W}
(Fig. 4d), respectively. It will record the IB {T ,W}, which disjoints to {X,Z}. With {X,Y ,Z}
as MUCT, the algorithm checks whether subsequent calls are necessary. However, since both X
and Z precede W in the order, no recursive call is made. After all, the complete set of POMISs
{{S,T}, {T ,W}, {T ,W ,X}} given JG,Y K will be returned only examining 4 IBs compared to
25=32. If an order such that W precedes Z is considered, then a recursive call for subPOMISs will
be made for G{W ,Z} after examining GW . It is unclear at this moment how different ordering affects
the number of recursive calls.

Theorem 9 (Soundness and Completeness). Given information JG,Y K, the algorithm POMISs
(Alg. 1) returns all, and only POMISs.
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Proof. Let PG,Y be all POMISs for JG,Y K. Let π be an arbitrary sequence of V such that V =
{π(1),π(2), . . . ,π(n)} where n = |V|. Let A ≺ B if ∀B∈Bπ−1(A) < π−1(B) and A � B be
similarly defined. For readability, let T(Q) = MUCT(G{Q},Y ) and X(Q) = IB(G{Q},Y ). We first
show

PG,Y = {IB
(
GZ,Y

)
}Z⊆T\{Y }

= {IB (G,Y )} ∪
{
IB(GZ,Y )

}
∅6=Z⊆T\{Y }

= {IB (G,Y )} ∪
⋃

Q∈T\{Y }

{
IB(G{Q},Z,Y )

}
Z⊆T\{Q,Y }:Q≺Z

= {IB (G,Y )} ∪
⋃

Q∈T\{Y }:Q�X(Q)

{
IB(G

X(Q) [T
(Q) ∪X(Q)]Z,Y )

}
Z⊆T(Q)\{Y }:Q≺Z

The third line partitions 2
T\{Y }
>0 , the power set of T \ {Y } excluding an empty set, so that sets of

variables in each partition include the same variable, e.g., Q, with no variable smaller than Q with
respect to π. The fourth line follows from Prop. 7 (change for Z) and Prop. 8 (change of arguments
for IB). An additional constraint for Q being Q � X(Q) avoids redundant computations since two
different variables, e.g., Q′ and Q′′, can both yield the same MUCT and IB, T(Q′) = T(Q′′) and
X(Q′) = X(Q′′). Since{

IB(G
X(Q) [T

(Q) ∪X(Q)]Z,Y )
}
Z⊆T(Q)\{Y }

= PG
X(Q)

[T(Q)∪X(Q)],Y ,

we can rewrite PG,Y as (abusing notations)

PG,Y = {IB (G,Y )} ∪
⋃

Q∈T\{Y }:Q�X(Q)

PQ≺Z
G

X(Q)
[T(Q)∪X(Q)],Y

where the superscript Q ≺ Z serves as an additional constraint for efficiency.

The algorithm implements the above equality where parameter π in subPOMISs carries the constraint
Q ≺ Z and parameter O conveys the constraint Q � X(Q). Let W be an arbitrary POMIS
in PG,Y . We can index its element (i.e., variable) W = {Wi}|W|i=1 with respect to π so as to
π−1(Wi) < π−1(Wj) if i < j. Then, there exists a sequence of recursive calls of subPOMISs
where variables in W are sequentially determined to be intervened skipping the already determined to
do so (i.e., W ∩ IB(G′,Y ) where G′ is the first argument of subPOMISs). Therefore, the algorithm
completely enumerates all POMISs effectively avoiding redundant computations.

Appendix D Experiments

Task 1: P (UX1
= 1) = 0.54, P (UX2

= 1) = 0.67, P (UY = 1) = 0.58, P (UZ1
= 1) = 0.54, and

P (UZ2
= 1) = 0.44, and functions:

fZ1
(uZ1

) = uZ1

fZ2
(uZ2

) = uZ2

fX1
(z1, z2,uX1

) = z1 ⊕ z2 ⊕ uX1

fX2
(z1, z2,uX2

) = 1⊕ z1 ⊕ z2 ⊕ uX2

fY (x1,x2,uY ) = (x1 ∧ x2) ∨ uY

Task 2: P (UX = 1) = 0.11, P (UY = 1) = 0.15, P (UZ = 1) = 0.6, and P (UXY = 1) = 0.51
and functions:

fZ(uZ) = uZ
fX(z,uX ,uXY ) = uX ⊕ uXY ⊕ z
fY (x,uY ,uXY ) = 1⊕ uY ⊕ uXY ⊕ x

Task 3: P (US = 1) = 0.45, P (UT = 1) = 0.81, P (UW = 1) = 0.07, P (UX = 1) = 0.06,
P (UY = 1) = 0.06, P (UZ = 1) = 0.05, P (UWX = 1) = 0.51, and P (UY Z = 1) = 0.54,
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and functions:

fS(uS) = uS
fT (uT ) = uT

fW (s,uW ,uWX) = uW ⊕ uWX ⊕ s
fZ(uZ ,uY Z) = uZ ⊕ uY Z

fX(t, z,uX ,uWX) = 1⊕ t⊕ z ⊕ uX ⊕ uWX

fY (t,w,x,uY ,uY Z) = t⊕ w ⊕ x⊕ uY ⊕ uY Z
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