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Abstract

Generalization to an unseen target domain is not possible without asserting a causal

structure that constrains the source and target domains. We study a setting where
ample source data is supplemented with limited target data, also known as super-

vised domain adaptation (DA). We consider multi-source DA with discrete-valued
variables, and assume existence of a causal structure underlying the source and
target domains. We design a structure-informed procedure that leverages qualitative
knowledge of the structure – which is in form of causal graphs and domain discrep-
ancies – to transport inferences from the source data to the target domain. We also
design a structure-agnostic algorithm that would achieve performance guarantees
almost as good as the structure-informed baseline, offering few-shot learning in
certain instances. We extend our findings to the sequential prediction task, where
knowledge of the complex causal structure allows the structure-informed proce-
dure to learn modular predictors from different source domains and systematically
recompose them for faster adaptation in the target domain, and we then show that
in these scenarios the structure-agnostic approach would achieves similar fast rates
as well. Our results characterize when and how few-shot sequence learning is
possible, and provide a causal theoretical basis for data-driven domain adaptation
through a unifying structure-agnostic scheme. Experiments corroborate our results.

1 Introduction

Machine learning deals with generalizing patterns from finite samples to the distribution that generates
these samples. The classical sample-to-population performance guarantees [34, 35] rely on the
assumption that target domain, where the solution would be evaluated, entails a data distribution
identical to the source domain, where the training data is obtained from. However, in practice the
performance would take a serious even under small qualitative differences between source and target
domains. This problem is known broadly as a distribution shift in ML, and generalizability or external
validity in a broader scientific context. In particular, the domain generalization task refers to a
situation where the learner has access to typically large data collected from one or multiple source
domains and no data from the target domain. This is an extreme case of the domain adaptation

problem where the learner also has access to a small amount of data collected from the target domain.

Theoretical understanding of generalization across domains is challenging. Arbitrary differences
between the source and target domains inevitably imposes a barrier for learning, as there would be
no basis for usefulness of source data in the target learning task. Thus, a formal approach to this
problem necessitates establishing a notion of structure that specifies what the target domain can be in
relation to the source domains. Then, one can imagine a carefully designed algorithm that leverages
this structure and uses only the statistical associations present in the source data that would provably
remain stable/invariant in the target, thus achieve a prediction rule with out-of-distribution guarantees.
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Table 1: Overview of the settings considered in this paper

Setting Causal diag. Str.-informed Str.-agnostic Examples

Uni-cause (App. A) Fig 1a Alg 5, Lem A.3 Alg 6, Thm A.5 Ex A.1, Ex A.4

Multi-cause (Sec. 2) Fig 1b Alg 1, Lem 2.3 Alg 2, Thm 2.5 Ex 2.2, Ex 2.4

Sequential (Sec. 3) Fig 1c Alg 3, Lem 3.3 Alg 4, Thm 2.5 Ex 3.1

X

Y

(a) Uni-cause

X1 X2 ¨ ¨ ¨ XM

Y

X

(b) Multi-cause

V1 V2 ¨ ¨ ¨ VM ¨ ¨ ¨ Vi ¨ ¨ ¨ VT

X Y

(c) Sequential

Figure 1: Causal diagram representing each of the settings considered in this paper.

Domain adaptation in prediction tasks involving covariates X and label Y has been studied in the
literature [8, 9, 23, 6, 37, 15, 16], where various notions of divergence between the source and
target X distribution are used as proxies for domain-relatedness. Other work in this area leverages
distributional assumptions relating source and target, e.g., [10, 7, 5, 4] where learning in the source
yields smaller complexity for learning in the target, e.g., through learning a shared representation.

Humans are particularly effective in transferring knowledge across domains [21, 25, 33], and causality
is known to be the pillar of human understanding and decision making, especially under changing
circumstances [14, 31]. Principles of generalization to the unseen from a causal perspective has been
extensively studied under the rubrics of transportability [28, 2, 13, 12, 17, 18], and also through the
lens of statistical invariances entailed by an implicit causal structure [29, 30, 20, 22]. In DA, since
some target data is available, the learner would always have the choice of discarding the source data
entirely, and relying solely on the target data. Thus, the theoretical question in DA is not whether
it is possible to learn, but how fast learning can take place and how to best leverage the data from
the source domains. In this paper, we seek to characterize the situations where certain aspects of
the source data deems generalizable, thus allowing zero-shot/few-shot learning of the target (i.e.,
fast adaptation), and when learning from the source data hinders learning in the target (i.e., slow
adaptation), and what lies in between these two extremes. Our contributions are the following:

1. Causal structure for faster adaptation rates. In Section 2, we illustrate the role of an
underlying causal structure in the classification task, and introduce a more fine-grained
causal structure that allows transportability through a structure-informed procedure. We
provide target performance guarantees for the structure-informed predictor, and introduce
a structure-agnostic procedure with a small excess risk compare to the structure-informed
baseline, enabling few-shot adaptation.

2. Extension to sequence adaptation. In Section 3, we consider DA in sequential prediction
task (Figure 1c) where the objective is to predict the last token of a sequence from a prefix of
it, e.g., fine-tuning for reasoning in the language models. We introduce discrepancy oracle
(Definition 3.2) that encodes when a common logic/circuit is used at to generate tokens
at different position in different domains. We devise a structure-informed algorithm that
leverages this elaborate structural knowledge to learn useful modular predictors from the
combination of source and target data, and compose them for faster adaptation. Next, we
introduce an structure-agnostic algorithm that competes with the structure-informed baseline

with a Op

b
polypT q

n q margin where T is the length of the sequence and n the number of
target data. Our findings shed light on possibility of agnostic adaptation in a multitude of
setups where the existing baselines fail.
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Preliminaries. We use capital letters to denote variables (X), small letters for their values (x), bold
letters for sets of variables (X) and their values (x), and use caligraphic letters (X ) to denote their
support. A conditional independence statement in distribution P is written as pX KK Y | ZqP . A
d-separation statement in some graph G is written as pX KKd Y | Zq. To denote P pY “ y | X “ xq,
we use the shorthand P py | xq. The basic semantic framework of our analysis relies on Structural
Causal Models (SCMs) [27, Definition 7.1.1], which are defined below.

Definition 1.1. An SCM M is a tuple M “ xV,U,F , P y where each observed variable V P V
is a deterministic function of a subset of variables PaV ! V and latent variables UV ! U, i.e.,

v :“ fV ppaV ,uV q, fV P F . The unobserved variables U follow a distribution P puq. ˝

We assume the model to be recursive, i.e. that there are no cyclic dependencies among the variables.
SCM M entails a probability distribution P

M
pvq over the set of observed variables V such that

P
M

pvq “

!

U

"

V PV

P
M

pv | paV ,uV q ¨ P puq ¨ du, (1)

where the term P pv | paV ,uV q corresponds to the function fV P F in the underlying structural
causal model M. It also induces a causal diagram GM in which each V P V is associated with a
vertex, and we draw a directed edge between two variables Vi Ñ Vj if Vi appears as an argument
of fVj in the SCM, and a bi-directed edge Vi Ø Vj if UVi X UVj ‰ H or P pUVi ,UVj q ‰

P pUViq ¨ P pUVj q, that is Vi and Vj are confounded [3].

Throughout this paper, we only consider discrete-valued variable, and assume the observational
distributions entailed by the SCMs satisfy strict positivity assumption, that is, PM

pvq " ω, for every
v and a known constant ω. We will also operate non-parametrically, i.e., making no assumption about
the particular functional form or the distribution of the unobserved variables.

2 Transportability of modular predictors

X1 X2 X3

Y

X :

Figure 2: Causal diagrams
corresponding to Exam-
ple 2.2. Color-coded edges
show parents of Y in each
domain: blue for M1,
orange for M˚

We consider a classification problem where X “ tX1, X2, ..., XMu

is multivariate, each taking value in a finite set X , and Y taking value
in the finite set Y , which is is the last variable in the causal order.
Further, we assume that Y is a downstream variable, i.e., last in the
causal order. Also, we assume that Y is not confounded with any
of the X variables, i.e., there exists no unobserved variable pointing
to both Y and X variables in the causal diagram induced by the
source and target SCMs. The objective is predicting the label Y
using covariates X, i.e., learning P

˚
py | x1, ..., xM q. There is a

loss function εpµ; y,xq, and the risk is defined as the expected loss
RP˚ pµq :“ EP˚ rεpµ;Y,Xqs. The true risk minimizer is denoted
as µ˚ P argminµ:XÑsimplex|Y| RP˚ pµq, and the empirical risk min-
imizer w.r.t. data D is denoted as,

P̂ py | x;Dq P argmin
µ:XÑsimplex|Y|

ÿ

y,xPD

εpµ; y,xq. (2)

We consider the loss to be the negative log-likelihood εpµ; y, xq :“ ´ logµpy | xq in this work, and
the objective is to minimize the excess risk denoted by RP˚ pµq ´ RP˚ pµ˚q.

Suppose we have access to target data D˚ drawn i.i.d. from the target domain ϑ
˚ that entails the target

distribution P
˚

px, yq, as well as source data D
1
, D

2
, . . . , D

K from a set of source domains !src
“

tϑ
1
,ϑ

2
, ...,ϑ

K
u that entail the source distributions P src

“ tP
1
px, yq, P

2
px, yq, . . . , P

K
px, yqu. Let

n “ |D
˚

| and N “ |D
j
| for all j P rKs, and suppose N " n. We assume strictly positive mass for

every combination of the variables, i.e., P j
px, yq " ω for all j P rKs Y t˚u. To encode structural

invariances between the domain, we use the following notation by [13, 1].

Definition 2.1 (Domain discrepancy sets). The collection of subsets of observable variables ” “

t”j,j1 uKj,j1PrKsYt˚u
where ”j,j1 contains a variable V P V if there is a possible mismatch between

the causal mechanism of V in domains ϑj
,ϑ

j1
, i.e., either f j

V ‰ f
j1
V or P j

puV q ‰ P
j1

puV q. ˝
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Example 2.2 (Modular transportability). Suppose X1, X2, X3, Y P t0, 1, ..., 9u. There is a single
source domain M1 and a target domain M˚, described as follows:

UX1 , . . . , UXM „ P puX1 , . . . , uXmq

UY „ Multinomialpprob : t0.91, 0.01, ..., 0.01uq

Xm # UXm , @m P rM s

Y #

"
X1 ´ X2 ` UY pmod 10q in M1

X3 ´ X2 ` UY pmod 10q in M˚

The causal diagram corresponding to these SCMs is shown in Figure 2. The causal parents of Y are a
different subset of covariates in the source and target domains, but the mechanism that decides Y
based on these parents is shared between ϑ

˚ and ϑ
1; it is a noisy subtraction of second parent from

the first parent.

Suppose we know the parents of Y in both source and target, i.e., we have access to the ordered sets
Pa1Y “ xPa1Y r1s,Pa1Y r2sy “ xX1, X2y and Pa˚

Y “ xPa˚

Y r1s,Pa˚

Y r2s “y “ xX3, X2y. Moreover,
suppose we have access to ”, which indicates the mechanism sharing, and in this case Y R ”1,˚

implies f˚

Y pa, b, uY q “ f
1
Y pa, b, uY q for all a, b P t0, 1, ..., 9u, and P

˚
puY q “ P

1
puY q. Using this

information, we can train a modular predictor for Y using data from ϑ
1, i.e, µ1py | a, bq “ P̂ py |

X1 “ a,X2 “ b;D1
q, and then, because we know the parents of Y in the target, we can plug them

into this predictor in the appropriate order and predict Y with small error in the target domain without
any target data.

Note that for the full covariates, f1
Y px, uY q ‰ f

˚

Y px, uY q, so if we treat this example as a uni-cause
case (Appendix A), then Y | X wouldn’t be invariant (i.e., Y P ”1,˚), and therefore, the structure-
aware strategy would discard the source data. However, once we unfold X into tX1, X2, X3u, with
the more elaborate structure that involves the ordered parents of Y in each domain and ”, it would be
possible to transport across the domains. In situations where Y P ”j,˚ for all j P rKs, no transport
is possible. ˝

Algorithm 1 Str.-informed DA (multi-cause)

Require: D
1
, D

2
, . . . , D

K
, D

˚;”, tPajY u

Ensure: µTRpy | xq « P
˚

py | xq

1: J # tj P rKs and Y R ”j,˚u

2: c # |Pa˚

Y |

3: D
TR
R #

#
jPJ

D
j
rY,R1:c “ pajY r1 : css

4: D
˚

R # D
˚

rY,R1:c “ Pa˚

Y r1 : css

5: µpy | rq # P̂ py | r1:c;DTR
R Y D

˚

Rq

6: Return µTR # µpy | r “ pa˚

Y q

Notably, because the parents of Y are different
between the domains, the existing notions of
transportability (e.g., [13]) do not license trans-
port in the case of Example 2.2. However, we
can transport since a common causal module
f

˚

Y “ f
1
Y governs generation of the label Y

across the domains. More broadly, if we were
to consider the less-granular causal model based
on the causal diagram X Ñ Y , then applying
the same machinery would not license transport,
as it is leveraging modularity of a more-granular
mechanism between source and target; a more
detailed discussion on the uni-cause model is provided in Appendix A, and serves as a useful intro-
duction to the general approach we will develop subsequently. Algorithm 1 summarizes the strategy
discussed in Example 2.2, and what follows its rate.
Proposition 2.3 (Structure-informed DA rate; multi-cause). In Algorithm 1 with high probability,

RP˚ pµTRq ´ RP˚ pµ˚q “

#
Op

|X |
c

¨|Y|

ω2¨N q if J ‰ H

Op
|X |

c
¨|Y|

ω¨n q otherwise
(3)

where c “ |Pa˚

Y | $ M . ˝

All proofs are in Appendix B. In words, if J is empty, it means that Y P ”j,˚ for all source domains
ϑ
j , thus no source data can help learning in the target. Thus, our error rate decays similar to ERM on

the target Dj . If there are any sources that can be used for learning in the target, knowledge of the
domain discrepancies and the parent sets allows us to pool the data from relevant sources, reorder the
covariates to match with the parents of Y in the target, and train a single predictor using large data
pooled from the sources and target. In this case, what allows zero-shot generalization is large source
data supplemented with domain knowledge about the causal structure within each of the domains and
the mechanism discrepancies across the domains. In the next example we demonstrate a strategy that
probes whether Y P ”j,˚ leveraging the target data, yet achieves competitive rates.
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V1 V2 V3 V4` ˆ2

(a) G1

V1 V2 V3 V4 V5 V6ˆ2 ˆ2 `

ˆ2

`
(b) G˚

Figure 3: Causal diagrams corresponding to Example 3.1. The labels `,ˆ2 indicate true mechanisms
that are noisy summation and doubling. The query of interest is P˚

pv6 | v1q « 1tv6“13ˆv1pmod10qu

Example 2.4 (Agnostic approach: multi-cause prediction). In the context of Example 2.2, suppose
we do not have access to domain discrepancy sets ” and the parent sets Pa1Y ,Pa˚

Y . To compensate
for the lack of knowledge, we take the following approach: we train a collection of predictors that
would contain at least one whose prediction error in the target is as good as what is achievable
through structure-informed DA, and then use held-out target data to find the best performing one. In
particular, for every c P t0, 1, 2, 3u, we take two ordered set of the covariates of size c, and regress Y
on these c variables in these order, once using target data only and once using source and target data
combined. this results in a total of at most

$3
c“0p

`
3
c

˘
¨ c!q2 `

`
3
c

˘
¨ c! “ 98 predictors. Notice that this

number does not depend on dimensionality of X,Y . Finally, we use held-out target data to choose
the best performing one in this pool of predictors. This imposes a fixed excess risk on top of what is
achievable through structure-informed DA. ˝

Algorithm 2 Structure-agnostic DA (multi-cause)

Require: D
1
, D

2
, . . . , D

K
, D

˚

Ensure: µAgpy | xq « P
p
y | xq

1: D
˚

tr, D
˚

te # partitionpD
˚

q

2: H # H

3: for c P t0, 1, ...,Mu do
4: for tPajY r1 : cs % rM su and S % rKs do
5: D

TR
#

#
jPS

D
j
rY,R “ PajY s

6: H # H Y tP̂ py | r;D˚

trrY,R “ Pa˚

Y s Y

D
TR

qu

7: end for
8: end for
9: Return µAg # argminµPH

εpµ;D˚

teq

Algorithm 2 generalizes the approach de-
scribed in Example 2.4, and what follows is
its performance guarantee.
Proposition 2.5 (Structure-agnostic DA
rate: multi-cause.). Let µTR, µAg be

learned by the structure-informed and ag-

nostic DA procedures (Algorithms 1 and 2),

respectively. We have,

RP˚ pµAgq “ OpRP˚ pµTRq`

c
K ¨ M ¨ logM

n
q,

(4)
where K is the number of source domains,

M is the number of covariates, and n is the

number of data from the target domain. ˝

In words, structure-agnostic DA yields a
target risk that is slightly worse than what
is achievable via the structure-informed DA. In a way, there is a cost for learning ” and Pa˚

Y since
these are assumed unknown.

3 Few-shot sequence learning

Suppose the observable variables in domain ϑ
j (j P rKs Y t˚u) are V “ tV1, V2, ..., VTj u (possibly

different number across domains), and every Vi takes value in a finite set V , shared across all positions
and domains. Assume the causal order V1 ! V2 ! ... ! VTj , and that there exists no unobserved
confounding. Let Gj

“ tPaji u
T
i“1 be the causal diagram underlying the SCM Mj (e.g., Figure 3).

The goal of the task is to predict the last token of the sequences in the target using the first M tokens,
i.e., to learn the conditional distribution P

˚
pvT˚ | v1:M q. This is an extension of the multi-cause

problem which has Y “ VT and X “ V1:M . Below is a illustrative example.
Example 3.1. Consider a single source domain ϑ

1 represented by M1, and the target domain ϑ
˚

represented by M˚. The variables in both SCMs have a support of t0, 1, . . . , 9u. The noise Ui in
all domains and for all variables follows the distribution Multinomialpprob : t0.91, 0.01, ..., 0.01uq;
having most of the mass on 0 and uniformly small mass on other outcomes. Let g1px1, uq “ 2ˆx1`u

and g2px1, x2, uq “ x1`x2`upmod10q be noisy doubling and summation, respectively, and suppose
the function f

j
i determining Vi in the domain j is equal to either g1 or g2. In the causal diagrams in
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Figures 3a and 3b, for each variable the function that does the value assignment is shown. Suppose
we know the causal diagrams (i.e., the parents for each variable in both domains) and the domain
discrepancies as well as which variables share the same function in their value assignment. Since the
distribution of Ui is the same for all variables and there exists no confounders, knowledge of domain
discrepancies and the graph yields invariance of certain conditional distributions across different
positions and domains, e.g.,

P
˚

pV3 “ y | V2 “ x1q “

9ÿ

u“0

P puq ¨ 1tg1px1,uq“yu “ P
1
pV4 “ y | V3 “ x1q. (5)

Using these probabilistic invariances derived from the causal structure, we attempt to estimate the
query of interest Q “ P

˚
pv6 | v1q. First, we train modular conditional probability distributions

P̂apy | x1q, P̂bpy | x1, x2q using data from variables and their parents across different domains if they
share the functional assignment. For example V3 from target and V4 from the source have a shared
mechanism, as shown in Equation (5), entail the same conditional given their parents, thus, their data
would be pooled to be used for estimation of P̂apy | x1q. Finally, we can transport Q as follows:

Q “

ÿ

v2:5

P
˚

pv2:6 | v1q (6)

“

ÿ

v2:5

P
˚

pv2 | v1q ¨ P
˚

pv3 | v1, v2q ¨ P
˚

pv4 | v3q ¨ P
˚

pv5 | v4, v2q ¨ P
˚

pv6 | v5, v4q (7)

«

ÿ

v2:5

P̂apv2 | v1q ¨ P̂bpv3 | v1, v2q ¨ P̂apv4 | v3q ¨ P̂bpv5 | v4, v2q ¨ P̂bpv6 | v5, v4q. (8)

The large source data (N " n) can be used for training of both P̂a, P̂b, so the above transportation
formula can be considered a zero-shot generalization, i.e., even with no target data the above estimator
retains accuracy due to transportation of conditionals from the large source data. ˝

As seen in the above example, the domain discrepancies may be more complicated in the sequential
setting, allowing a match between mechanisms from different positions i, i

1 and across different
domains j, j1. Below is an extension of domain discrepancies useful to accommodate such invariances.
Definition 3.2 (Discrepancy oracle). Let ”pi, j; i1

, j
1
q be a boolean function that returns one if either

f
j
i ‰ f

j1
i1 or P j

puiq ‰ P
j1

pui1 q, and returns zero otherwise. ˝

Algorithm 3 Structure-informed DA (sequential)

Require: D
1
, D

2
, . . . , D

K
, D

˚; ”; tGj : tPaji uu

Ensure: µTRpvT˚ | v1:M q « P
˚

pvT˚ | v1:M q

1: for i P tM ` 1, ..., T˚u do
2: Ji # tpi

1
, j

1
q : ”pi, ˚; i1

, j
1
q “ 0 and j P rKsu

3: D
TR
i #

#
i1,j1PJiYtpi,˚qu

D
j1

rY : Vi1 ,X1:c : Paj
1

i1 s

4: end for
5: µTR “

%T˚
i“M`1 P̂ pY “ vi | X “ pa˚

i ;D
TR
i q

6: Return µTRpvT˚ | v1:M q #
$

vM`1:T˚´1
µTR

In the context of Example 3.1, for
example, ”p4, 1; 3, ˚q “ 0 and
”p6, ˚; 3, ˚q “ 1. In structure-
informed procedure (Algorithm 3)
the structure encoded by the dis-
crepancy oracle ” is used and
the domain-specific causal diagrams
G1

, . . . ,GK
,G˚ to pool data that is

causally relevant to each of the vari-
ables in the target sequence. Then,
this data is used to learn the con-
ditional distribution P

˚
pvi | pa˚

i q.
These conditional distributions are then composed to yield an estimator of P˚

pvM`1:T˚ | v1:M q,
and finally the variables VM`1, ..., VT˚´1 are marginalized out to obtain an estimation of the target
quantity P

˚
pvT˚ | v1:M q.

Remark that in the multi-cause scenarios discussion in earlier, the structure-informed DA procedure
(Algorithm 1) either achieves zero-shot generalization (i.e., rates in terms of N ) or uses only the
target data (rates in terms of n) (Lemma A.3 and Proposition 2.3). However, in sequential prediction,
the predictor µTR returned by Algorithm 3 may lie in between the two extremes; in particular, if
all conditional distributions tP

˚
pvi | Pa˚

i qu
T˚
i“M`1 are transported, i.e., data from at least one of

the sources is pooled for estimation, then all of them would have low error, resulting in a target risk
guarantee for µTR that depends on N . However, if none of the conditionals tP

˚
pvi | Pa˚

i qu
T˚
i“M`1

can be transported, then the guarantee would be in terms of the target data size n only. One can
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imagine in-between situations where some of the conditionals are transported and others must
be learned with target data only; in these situations, the risk bound would have a fast and slow
components which decay with n and N , respectively. Below is an upper-bound for the target risk of
structure-informed DA in sequential prediction (for a more refined analysis, refer to Appendix C).
Theorem 3.3 (Structure-informed DA rates; sequential prediction). In Algorithm 3 with high proba-

bility,

RP˚ pµTRq ´ RP˚ pµ˚q “

#
Op

|V|
T

ω2N q if @i P tM ` 1, ..., T u : Ji ‰ H

Op
|V|

M`1

ωn q otherwise

(9)

where T is the length of the longest sequence.

In words, the guarantee offered by Theorem 3.3 decays with N (i.e., zero-shot generalization) if
all components of the sequence from M ` 1 to T can be transported from one of the sources.
Transportability can be interpreted as a causal interpolation of the source domains, since each target
mechanism f

˚

i must be present in at least one position of one of the source domains. On the other
hand, when at least one component cannot be transported, then the rate would involve a term which
decays with n, i.e., a slow adaptation.

Algorithm 4 Structure-agnostic DA (sequential)

Require: D
1
, D

2
, . . . , D

K
, D

˚; ”; tGj
u

Ensure: Target classifier Êp˚ rY | xs

1: Let E “ tpi, jq : i P rTjs, j P rKs Y t˚uu and H # tu

2: D
˚

tr, D
˚

te # partitionpD
˚

q

3: for every partition of E into subsets S “ tElul do

4: ”pi, j; i1
, j

1
q #

"
0 if DEl P S s.t. P pi, jq, pi

1
, j

1
q P El

1 otherwise
5: for every set of graphs tG

1
,G2

, ...,GK
,G˚

u do
6: H # H Y tStrInfpD1

, ..., D
K
, D

˚

tr;”; tGj
uqu

7: end for
8: end for
9: Return µAg # argminµPH

εpµ;D˚

teq

In more realistic settings where one
does not have access to the discrep-
ancy oracle and the causal diagrams,
we pursue a strategy analogous to
the agnostic procedure in the previ-
ous section. Each instance of the
the domain knowledge (discrepancies
and graphs) yields an estimator of
P

˚
pvT | v1:M q trained using a com-

bination of the source and target data
(Algorithm 3). Since the domain
knowledge ”, tGj

ujPrKsYt˚u is a dis-
crete object, there exists finitely many
distinct estimators of P˚

pvT | v1:M q

considering all possibilities of the do-
main knowledge. We partition the tar-
get data into training and validation sets of size n

2 , and use the training part along with the source
data to obtain all possible estimators of P˚

pvT | v1:M q. Finally, we use the target validation data to
pick the best performing estimator from the pool. Algorithm 4 summarizes this approach, and what
follows is its performance guarantee.
Theorem 3.4 (Structure-agnostic DA rate: sequential prediction). Let µTR, µAg be learned by the

structure-informed and agnostic DA procedures (Algorithms 3 and 4). We have,

RP˚ pµAgq “ OpRP˚ pµTRq `

c
K ¨ T 3 ¨ log T

n
q (10)

where K is the number of sources, and T is the length of the longest sequence.

The agnostic procedure would have a guarantee that is only marginally worse than what it achieved
through the structure-informed procedure. For example, if the quantity of interest P˚

pvT | v1:M q is
transportable from the sources given ”,Gj , i.e., the rate would only depend on N , then the agnostic
procedure would adapt with a fast rate since the following upper-bound can be achieved:

RP˚ pµAgq ´ RP˚ pµ˚q “ RP˚ pµAgq ´ RP˚ pµTRq ` RP˚ pµTRq ´ RP˚ pµ˚q (11)

“ Op

c
K ¨ T 3 ¨ log T

n
`

|V|
T

ω2N
q. (12)

In the above, for large enough N , the term involving n is dominant, thus we would achieve arbitrarily
small target error with target data size polynomial in the number of variables. This can be compared
with target-only estimation through ERM which achieves RP˚ pP̂ pvt | v1:M ;D˚

qq ´ RP˚ pµ˚q “

Op
2M

n q, which is exponential in the number of variables.
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4 Two-stage adaptation

Algorithm 4 iterates over all combinations of discrepancy oracle and graphs, and this makes it
computationally intractable. To resolve this issue, we introduce an alternative approach that is
equivalent to Algorithm 4. It is a two-stage procedure that involves certain pretraining a single model
on source data, and then reusing the model components for a separate fine-tuning step using the target
data.

4.1 The architecture and pretraining

For simplicity, suppose the same number of variables are observed in all domains, i.e., Tj “ T .
Further, suppose |Paji | $ 1 for all i P rT s, j P rKs Y t˚u; we remove this condition in Appendix D.
The goal of pretraining is to use the large source data and learn the following mappings that satisfy
the following desired properties.

1. The mechanism indicator ϖ : rT s ˆ rKs Ñ rds, such that,
#pi, jq ‰ #pi

1
, j

1
q if and only if ”pi, j; i1

, j
1
q “ 1 (13)

2. The parent matrix: Aj
P r0, 1s

TˆT for all j P T is lower-diagonal, such that,

A
j
i,i1 “ 1 iff Paji “ Vi1 (14)

3. Universal predictor $ : V ˆ V ˆ rds Ñ r0, 1s:

@y, x P V, i P rT s, j P rKs : $py | x;ϖ “ #pi, jqq “ P
j
pVi “ y | Paji “ xq (15)

In words, it is desirable #pi, jq encodes the discrepancy oracle by clustering the position-domain
pair into the categories t1, ..., du, and tA

j
u
K
j“1 encode the causal diagram in each domain. It is

clear that once the mappings satisfy the properties Equations (13) to (15), then we can have optimal
prediction in the source domain: for predicting vi in domain ϑ

j take, v̂i „ $pvi | X “ A
j
i,¨ ¨

v1:T ;#pi, jqq. Interestingly, any instantiation of #, tA
j
u,$ that maximizes a penalized likelihood

on source populations satisfies the above properties, as stated below.
Theorem 4.1 (Pretraining). Let ϱ

src
be a set of parameters for the mappings above such that,

ϱ
src

P argmin
εP!

` ÿ

|V|T

Kÿ

j“1

P
j
pvtq

Tÿ

i“1

´ log$εpvi | A
j
εi,¨ ¨ v1:T ;#εpi, jqq

˘
` ςpd ` }A

¨
}1q, (16)

where % denotes all parameterizations for the mappings, rds is the range of #, and }A
¨
}1 denotes

sum of the entries of the parent matrices. #εsrc , tA
j
εsrcu,$εsrc satisfy Equations (13) to (15). ˝

Thus, maximizing the likelihood w.r.t. large enough source data yields the desired properties
guaranteed in Theorem 4.1. Next, we leverage these properties for fast adaptation to target data.

4.2 Fine-tuning

We partition the target data D
˚ into D

˚

tr, D
˚

ft, D
˚

te of proportionate size. Recall rds as the range of
the mapping #. Once pretrained, each ϖ P rds corresponds to a subset of position-domain pairs in
the source that share the causal mechanism; this is due to Theorem 4.1 that ensures Equation (13).
Suppose for a position i P rT s, it holds that ”pi, ˚; i1

, j
1
q “ 0. Thus, for all x, y P V ,

P
˚

pVi “ y | Pa˚

i “ xq “ P
j1

pVi1 “ y | Paj
1

i “ xq (Due to ”pi, ˚; i1
, j

1
q “ 0)

(17)
“ $εsrcpVi1 “ y | X “ x;ϖ “ #pi

1
, j

1
qq (Equation (15)) (18)

Notably, $εsrc is learned in the pretraining stage, yet we need to discover ϖ,Pa˚

i at each position
i P rT s. To this end, we take a target parent matrix A

˚
P r0, 1s

TˆT to encode Pa˚

i via A
˚

i,i1 “ 1 if
Pa˚

i “ Vi1 , and also a target mechanism indicator #˚ : rT s Ñ rds. Next, we use D
˚

ft to learn,

ϱ
trg

P argmin
εP!

ÿ

v1:T PD˚
ft

Tÿ

i“1

´ log$εsrcpY “ vi | X “ A
˚

ε i,¨ ¨ v1:T ;#
˚

ε piqq. (19)
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(a) Multi-cause settings (b) Sequential setting

Figure 4: Performance of our algorithm (blue) in comparison with two baselines. The baselines have
the same architecture as our algorithm (Section 4.1), and combine the source and target data for a
single-stage training. ERM-joint preserves the domain labels (i.e., only pretraining), while ERM-pool
drops them (# constant). For more details see Appendix E.

This optimization considered at each position i P rT s is equivalent to using |D
˚

ft| target data to pick
the best-performing predictor for Vi in ϑ

˚ among a pool of d ¨ pi ´ 1q candidates from the sources.

We use D
˚

tr to learn a separate target-only model at every position i; in particular, let µ˚

i :“ P̂ pvi |

v1:i´1;D˚

trq. Finally, at each position i, we choose a linear interpolation of the best transported
predictor and µ

˚

i . This is performed via learning the transport indicators s
˚

1 , . . . , s
˚

T P r0, 1s through,

s
˚

i P argmin
sPr0,1s

ÿ

vPD˚
te

Tÿ

i“1

´ logps ¨$εsrcpvi | A
˚

εtrg i,¨ ¨v1:T ;#
˚

εtrgpiqq ` p1´sq ¨µ
˚

i pvi | v1:i´1qq (20)

In words, si « 0 indicates that the target-only model performs best on the held-out data D
˚

te, thus
deciding on no transport from the sources. On the other hand, si « 1 indicates a decision to transport.
Finally, we compute the estimation of the query of interest P˚

pvt | v1:M q:

µ̂ftpvT | v1:M q “

ÿ

vM`1:T´1

T"

i“M`1

si ¨µ
˚

i pvi | v1:i´1q ` p1´ s1q ¨$εsrcpvi | A
˚

εtrg i,¨ ¨ v1:T ;#
˚

εtrgpiqq

(21)

What follows justifies equivalence of two-stage adaptation with Algorithm 4.
Theorem 4.2 (Fine-tuning rate). Let µAg be learned by Algorithm 4 and µft (Equation (21)) be the

result of the two-stage adaptation. We have, RP˚ pµftq “ OpRP˚ pµAgqq

4.3 Empirical evaluation

We evaluate the performance of the two-step adaptation in Figure 4 in both multi-cause pM “ 9q

and sequential settings (M “ 3). Here, K “ 1, T “ 10,Paji $ 1, with V “ t0, 1, ..., 9u, i.e.,
single source adaptation from 10-token sequences of digits. We have N “ 104 data from source.
and the causal diagrams G1

,G˚ are encoded by A
1,true

, A
˚,true, randomly generated. Each causal

mechanism is selected at random from F “ tg2ˆ, gcopy, g`1, g´1, gunifu, which are noisy operators
(see Example 2.2). We ensure that the case is transportable by using all mechanisms F in both
source and target. Thus, the structure-informed algorithm would achieve zero-shot generalization.
We consider the performance of the two-stage adaptation (as a proxy to structure-agnostic DA in
Algorithm 4), and as the baselines we use two variants of ERM on combined source and target
data. We keep the architecture (Section 4.1) common between the models to isolate the effect of the
adaptation procedure. More evaluations are provided in Appendix E.

5 Conclusions

We proposed a causal framework for supervised domain adaptation, introducing structure-informed
and structure-agnostic algorithms. The causal structure enables learning by identifying which
components of a model can be reliably transported across domains. Even in the absence of structural
knowledge, agnostic procedures can achieve near-optimal performance. Finally, we developed a
two-stage learning procedure that is theoretically equivalent to an exhaustive agnostic procedure.
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A Multi-source domain adaptation in uni-cause case

Algorithm 5 Str.-informed DA (X Ñ Y )

Require: D
1
, D

2
, . . . , D

K
, D

˚;”
Ensure: µTR « P

˚
py | xq

1: J # tj P rKs and Y R ”j,˚u

2: D
TR

#
#

jPrKs s.t. Y R”j,˚ D
j

3: Return µTR # P̂ py | x;DTR
Y D

˚
q

Consider the classification task where Y takes value
in a finite support Y , and the covariate X that takes
value in a finite support X ; in particular the objective
is learning P

˚
pY “ y | X “ xq within the hypoth-

esis class containing all functions µpy | xq : X Ñ

simplex|Y|. There is a loss function εpµ; y,xq, and
the risk is defined as the expected loss RP˚ pµq :“
EP˚ rεpµ;Y,Xqs. The true risk minimizer is de-
noted as µ˚ P argminµ:XÑsimplex|Y| RP˚ pµq, and
the empirical risk minimizer w.r.t. data D is denoted
as,

P̂ py | x;Dq P argmin
µ:XÑsimplex|Y|

ÿ

y,xPD

εpµ; y,xq. (22)

We consider the loss to be the negative log-likelihood εpµ; y, xq :“ ´ logµpy | xq in this work, and
the objective is to minimize the excess risk denoted by RP˚ pµq ´ RP˚ pµ˚q.

Suppose we have access to target data D˚ drawn i.i.d. from the target domain ϑ
˚ that entails the target

distribution P
˚

px, yq, as well as source data D
1
, D

2
, . . . , D

K from a set of source domains !src
“

tϑ
1
,ϑ

2
, ...,ϑ

K
u that entail the source distributions P src

“ tP
1
px, yq, P

2
px, yq, . . . , P

K
px, yqu. Let

n “ |D
˚

| and N “ |D
j
| for all j P rKs, and suppose N " n. We assume strictly positive mass for

every combination of the variables, i.e., P j
px, yq " ω for all j P rKs Y t˚u.

Example A.1 (Classification in X Ñ Y case). Suppose the source domains are governed by SCMs
M1

,M2
, ...,MK , and the target domain ϑ

˚ is governed by the SCM M˚; For domain ϑ
j the SCM

Mj is denoted as follow:
UX , UY „ unifpr0, 1sq

X # f
j
XpUXq

Y # f
j
Y pX,UY q.

The source and target SCMs all induce the same causal diagram X Ñ Y , which indicates that
X is the cause of Y , and no unobserved confounders are present. Notice that without further
assumptions the source data is unrelated to classification in the target; for example, in a case of
X P t0, 1u it is possible that f1

Y “ f
2
y “ ... “ f

K
Y : 1tUY !0.5u, which means that Y KK X across

all sources, but f˚

Y px, uY q “ X ‘ 1tUY !0.9u, which means that P˚
pY “ 1 | X “ 0q “ 0.1 and

P
˚

pY “ 1 | X “ 1q “ 0.9 in the target domain. ˝

In the next example we use the domain discrepancy sets in an instance of the domain adaptation task.
Example A.2 (” might allow direct-transport, or suggest no transport). In the context of Example A.1,
suppose we have access to ”. If there exists j P rKs such that Y R ”j,˚, then f

˚

Y “ f
j
Y and

P
˚

puY q “ P
j
puY q, and therefore,

P
˚

py | xq “

ÿ

uY PY

P
˚

py | uY , xq ¨ P
˚

puY | xq (introduce UY )

“

ÿ

uY PY

1
tf˚

Y px,uY q“yu
¨ P

˚
puY q (defn. of f˚

Y & UY KK X)

“

ÿ

uY PY

1
tfj

Y px,uY q“yu
¨ P

j
puY q “ P

j
pY | xq (Y R ”j,˚)

Thus, to predict the label in the target, it suffices to estimate P
j
pY | xq using large source data

available from ϑ
j . However, if Y P ”j,˚ for all j P rKs, then domain discrepancy sets reject use of

any source data, as the real SCMs may be similar to what was discussed in Example A.1. ˝

A simple procedure in Algorithm 5 describes the above approach, and below is a guarantee.
Lemma A.3 (Structure-informed DA rate; X Ñ Y case). In Algorithm 5 with high probability,

RP˚ pµTRq ´ RP˚ pµ
˚

q “

#
Op

|X |¨|Y|

ω2¨N q if J ‰ H

&p
|X |¨|Y|

ω¨n q otherwise
(23)
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where J is obtained through Algorithm 5. ˝

In words, if the mechanism of Y in the target matches with that of any of the sources, then because of
support overlap (due P px, yq & ω) structure-informed DA can achieve fast rates that depend on the
source data size N which is typically large. This case is called transportable in the causal inference
literature, or domain generalization or zero-shot learning in the literature. In the other cases (i.e., the
non-transportable scenario), even with access to the structure ”, there might exist vastly different
realities (i.e., a tuple of source and target SCMs) which admit the structural assumption encoded in ”
but they do not agree on the classification rule in the target domain, thus, no adaptation is possible.
These two extreme cases happen as a byproduct of the discrete nature of the domain discrepancy
sets; if Y R ”j,˚ then the mechanism determining Y matches perfectly between ϑ

˚
,ϑ

j , and since
there is no confounding between Y and X (i.e., U variable pointing to both X and Y ), we ensure
that P˚

py | xq “ P py | xq. Note that not having a confounder is critical to this conclusion based on
the structure ”; in ??, we discuss how confounders can complicate structure-informed DA.

Notably, the risk upper-bound provided in Lemma A.3 is not tight, e.g., ω2 in the denominator of the
transportable case can be improved through adaptive procedures. Since we are assuming that ω is
a constant and N " n, the bounds serve the purpose for this work. Our main focus throughout is
identifying which source domains contain useful information for prediction in the target, and how
that information can be incorporated in learning, given the structure ”, thus we rely on the covariates
overlap. On the other hand, in many theoretical work on DA, it is presumed that the sources are all
useful for prediction in target, e.g., there exists a unique best hypothesis h˚ for all domains [8, 24],
thus, in these work the main complexity of DA comes from lack of overlap between the covariate
distributions across the domains.

Algorithm 6 Structure-agnostic DA (X Ñ Y )

Require: D
1
, D

2
, . . . , D

K
, D

˚

Ensure: µAgpy | xq « P
˚

py | xq

1: D
˚

tr, D
˚

te # partitionpD
˚

q

2: φS # P̂ py | x;D˚

tr Y
#

jPS
D

j
q for all S % rKs

3: Return µAg # argmin
S"rKs

εpφS ;D˚

teq

We treat the structure-informed DA proce-
dures (such as Algorithm 5) as the best one
can do given knowledge of the structural
properties of the problem. In reality, ac-
cess to such structure may not be viable,
and in the next example we would like to
consider adaptation in situations where ” is
unknown.
Example A.4 (Agnostic approach; X Ñ Y

case). In the context of Example A.1, sup-
pose we the structure ” is unknown, yet we would like to achieve guarantees not much worse than
what is achievable using ”. Note that structure-informed DA (Algorithm 5) pools data from the
source domain ϑ

j with the target data whenever ” implies that P˚
py | xq “ P

j
py | xq. If any of the

source data is pooled, then the error decays with N which is typically very large, otherwise, it would
decay with n, the number of target data points.

We can take the following approach to benefit from the source data even without the structure.
Partition the target data into D

˚
“ D

˚

tr \ D
˚

te of equal size n
2 . Then, for each subset of the

sources such as S % rKs, learn a predictor φSpy | xq :“ P̂ py | x;D˚

tr Y
#

jPS
D

j
q. Finally,

use D
˚

te to choose the best of the 2K predictors learned from each of the domains, i.e., µAg #

argmaxϑS :S"rKs

$
y,xPD˚

te
εpφS ; y, xq. The best error achievable using the structure ” can be

achieved by at least one of the 2K predictors we have learned. Thus, the extra risk of the above
procedure compared to the structure-informed case is equivalent to learning from a finite hypothesis
class of size 2K using D

˚

te data, which is bounded by Op

b
K
n q. ˝

Example A.4 shows that through a simple training-validation procedure, without access to the domain
discrepancies, it is possible to achieves rates that are only slightly worse than what is achievable
through explicit access to the domain discrepancies ”. We call such strategies Agnostic throughout
this work, and Algorithm 6 summarizes this approach. What follows is a formal statement.
Theorem A.5 (Structure-agnostic DA rate; X Ñ Y case). Let µTR, µAg be learned using structure-

informed and agnostic DA procedures (Algorithms 5 and 6), respectively. We have,

RP˚ pµAgq “ OpRP˚ pµTRq `

c
K

n
q, (24)

where K is the number of source domains, and n is the number of target data. ˝
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B Proofs

Definition B.1 (strongly convex functions). A function fpxq is m-strongly convex if,

fpx
1
q & fpxq ` →fpxq

T
px

1
´ xq `

m

2
}x

1
´ x}

2
, @x, x

1
P X , (25)

˝

Next, we show that the risk in our problem is strongly convex under strict positivity assumption
P

˚
px, yq " ω.

Lemma B.2 (strongly convex risk.). RP˚ pµq is ω-strongly convex w.r.t. µ under the assumption of

P
˚

px, yq " ω.

Proof. Recall the loss function εpµ; y, xq “ ´ logµpy | xq. Thus, the true risk of µTR can be
expressed as:

RP˚ pµTRq “ EP˚ r´ logµTRpY | Xqs (26)

“

ÿ

x

P
˚

pxq ¨

ÿ

y

P
˚

py | xq ¨ log
1

µTRpy | xq
(27)

“

ÿ

x

P
˚

pxq ¨ DKL

`
P

˚
p¨ | xq}µTRp¨ | xq

˘
. (28)

For a fixed x P X , the KL loss DKL

`
P

˚
p¨ | xq}µTRp¨ | xq

˘
is 1-strongly convex for the interior of

the simplex, i.e., under positivity. Thus, the weighted sum
$

x P
˚

pxq ¨ DKL

`
P

˚
p¨ | xq}µTRp¨ | xq

˘
.

with P
˚

pxq " ω would be ω-strongly convex [11].

What follows is standard high-probability bound for excess risk of ERM with strongly convex risk,
adapted from [19].
Corollary B.3. Let the ERM solution be,

µERM :“ P̂ py | x;D˚
q P argmin

µ:XÑsimplex|Y|

ÿ

x,yPD˚
´ logµpy | xq, (29)

and let the true risk minimizer be,

µ˚ “ argmin
µ:XÑsimplex|Y|

EY,X„P˚ r´ logµpy | xqs. (30)

Under P
˚

px, yq " ω, for any ↼ " 0 the following holds with probability 1 ´ ↼:

RP˚ pµERMq ´ RP˚ pµ˚q $

8 ¨
`
ln 1

ϖ ` |X | ¨ |Y| ¨ lnp1 `
n

|X |¨|Y|
q
˘

ω ¨ n
“ Op

|X | ¨ |Y|

ω ¨ n
q, (31)

where n “ |D
˚

|. ˝

We also show the following bound for the risk of the transported estimators.
Lemma B.4. Suppose P

˚
py | xq “ P py | xq. Define the transported predictor as the ERM over

D „ P px, yq:

µTR :“ P̂ py | x;Dq P argmin
µ:XÑsimplex|Y|

ÿ

x,yPD

´ logµpy | xq, (32)

and let the true risk minimizer be defined in Equation (30). Suppose P
˚

px, yq, P px, yq " ω. For any

↼ " 0 the following holds with probability 1 ´ ↼:

RP˚ pµTRq ´ RP˚ pµ˚q “ Op
|X | ¨ |Y|

ω2 ¨ N
q, (33)

where N “ |D|.
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Proof. Equal conditionals, i.e., P˚
py | xq “ P py | xq, implies that the true risk minimizer matches

under both distributions, i.e.,

µ˚ P argmin
µ

EP˚ rεpµ; y, xqs ’ñ µ˚ P argmin
µ

EP rεpµ; y, xqs. (34)

Since µTR is the solution of ERM under P , based on Corollary B.3, we have:

RP pµTRq ´ RP pµ˚q “ Op
|X | ¨ |Y|

ω ¨ N
q. (35)

Let ↽ “ maxxPX

P˚
pxq

P pxq
. For any µ : X Ñ simplex|Y|, we related the risk under P and P

˚:

RP˚ pµTRq ´ RP˚ pµ˚q “

ÿ

x

P
˚

pxq ¨

ÿ

y

P py|xq ¨ plogµ˚py|xq ´ logµTRpy|xqq (36)

“

ÿ

x

P
˚

pxq

P pxq
¨ P pxq ¨

ÿ

y

P py|xq ¨ plogµ˚py|xq ´ logµTRpy|xqq (37)

“ EpX,Y q„P

„
P

˚
pXq

P pXq
¨ plogµ˚py|xq ´ logµTRpy|xqq

&
(38)

$ ↽ ¨ EpX,Y q„P rlogµ˚py|xq ´ logµTRpy|xqs (39)

“ ↽ ¨
`
RP pµTRq ´ RP pµ˚q

˘
(40)

“ Op
↽ ¨ |X | cot |Y|

ω ¨ N
q “ Op

|X | cot |Y|

ω2 ¨ N
q. (41)

The last line follows from strict positivity:

↽ “ max
xPX

P
˚

pxq

P pxq
$

maxxPX P
˚

pxq

minxPX P pxq
$

1

ω
(42)

B.1 Proof of Lemma A.3

If J “ H, then the algorithm learns µTR # P̂ py | x;D˚
q, i.e., ERM on the target data only.

Followed from Corollary B.3, we obtain the desired guarantee.

If J ‰ H, then there exists at least one source domain j P J for which P
j
py | xq “ P

˚
py | xq,

and we transport the predictor from that domain. Since |D
j
| “ N , using Lemma B.4, we obtain the

desired result.

B.2 Proof of Theorem A.5

In Algorithm 6 we first compute a collection of predictors tφSuS"rKs. Then we use held-out target
data to choose the one with smallest risk. Let,

µ̃ P argmin
µPtϑSuS!rKs

RP˚ pµq, (43)

And let µTR be obtained from Algorithm 5. Firstly, consider the following cases:

1. J “ H: In this case, µTR is obtained through ERM on the target data, i.e., µTR “ P̂ py |

x;D˚
q, achieving the following guarantee (Corollary B.3):

RP˚ pµTRq ´ RP˚ pµ˚q “ Op
|X | ¨ |Y|

ω ¨ n
q. (44)

Notably, for S “ H, we have φS “ P̂ py | x;D˚

trq, where |D
˚

tr| “
n
2 . Thus,

RP˚ pµ̃q ´ RP˚ pµ˚q $ RP˚ pφHq ´ RP˚ pµ˚q (45)

“ Op
|X | ¨ |Y|

ω ¨ n
q. (46)
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2. J ‰ H: In this case, µTR is obtained through ERM on source data from domains ϑj for
j P J , which would achieving the following guarantee (Lemma B.4):

RP˚ pµTRq ´ RP˚ pµ˚q “ Op
|X | ¨ |Y|

ω2 ¨ N
q. (47)

Notably, for S “ J , we have φS trained using the same pooled data as µTR, where
|D

˚

tr| “
n
2 . Thus,

RP˚ pµ̃q ´ RP˚ pµ˚q $ RP˚ pφJ q ´ RP˚ pµ˚q (48)

“ Op
|X | ¨ |Y|

ω2 ¨ N
q. (49)

Comapring these rates with Lemma A.3 confirms:

RP˚ pµ̃q “ OpRP˚ pµTRqq. (50)

Next, we show that empirical version of µ̃, namely µAg, achieves the desirable excess compared to µ̃.

µAg in Algorithm 6 is achieved by minimizing the empirical risk over the finite collection tφSuS"rKs

using data D
˚

te of size n
2 . Standard uniform convergence guarantees of finite hypothesis classes

([36, 32]) imply that for any ↼ " 0, with probability 1 ´ ↼ the excess risk can be upper-bounded as:

RP˚ pµAgq ´ RP˚ pµ̃q $

d
log |tφSuS"rKs|

2 ¨
n
2

`

d
logp1{↼q

2 ¨
n
2

. (51)

This is due to the fact that |tφSuS"rKs| “ Op2Kq. Finally, Equation (50) implies,

RP˚ pµAgq $ RP˚ pµ̃q `

d
log |tφSuS"rKs|

2 ¨
n
2

`

d
logp1{↼q

2 ¨
n
2

(52)

“ OpRP˚ pµTRq `

c
K

n
q (53)

B.3 Proof of Proposition 2.3

Proof follows the logic of the proof of Lemma A.3 (Appendix B.1). In the transportable case we
would have J ‰ H in Algorithm 1. Thus, the data used for estimation of µTR is pooled from at least
one source domain ϑ

j for j P J , where |D
j
| “ N . The conditional distribution to be estimated is

µTRpy | pa˚

Y q, and for c “ |Pa˚

Y |, following Lemma B.4, we get the bound,

RP˚ pµTRq ´ RP˚ pµ˚q “ Op
|X |

c
¨ |Y|

ω2 ¨ N
q. (54)

On the other hand, in the non-transportable case, we would have J “ H, thus µTR is trained using
only data from the target domain, and due to Corollary B.3, achieves,

RP˚ pµTRq ´ RP˚ pµ˚q “ Op
|X |

c
¨ |Y|

ω ¨ n
q. (55)

B.4 Proof of Proposition 2.5

The proof follows the logic the proof of Theorem A.5 (Appendix B.2). Algorithm 6 computes the
collection of predictors H by iterating over all possible values of c “ |Pa˚

Y |, all possible combinations
of the parents across the domains, tPajY ujPrKsYtju, and all subsets of the source domains S % rKs.
For each combination, we pool the source data from the source domains S , and index them according
to the ordered parent sets, and compute the ERM. This process generates at most,

|H| $ 2K
Mÿ

c“0

pc! ¨

ˆ
M

c

˙
q
K

$ 2K ¨ M ¨ pM !qK $ pp2Mq
M

q
K
. (56)
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distinct predictors. For possible instance of ”, tPajY ujPrKsYt˚u there exists a predictor in H that is
learned using the same data as what would have been learned using the knowledge of the structure,
namely, µTR. Thus, the true risk minimizer in H, namely,

µ̃ P argmin
µPH

RP˚ pµq, (57)

achieves the same risk bound as µTR. Therefore, the empirical risk minimizer in H computed using
the held-out target data D

˚

te, i.e.,

µAg P argmin
µPH

1

|D
˚

tr|
¨

ÿ

y,xPD˚
te

εpµ; y, xq, (58)

would achieve an excess risk ([36, 32]),

RP˚ pµAgq ´ RP˚ pµ̃q $ Op
log |H|

n
q. (59)

Finally, since RP˚ pµ̃q “ OpRP˚ pµTRqq as discussed above, we have,

RP˚ pµAgq $ OpRP˚ pµTRq `
K ¨ M ¨ logM

n
q. (60)

B.5 Proof of Theorem 3.3

The query of interest P˚
pvT | v1:M q can be computed through the following formula by introducing

the intermediate variables VM`1:T´1 and then marginalizing them out:

P
˚

pvT | v1:M q “

ÿ

vM`1:T´1

P
˚

pvM`1:T | v1:M q. (61)

Following the causal order, and the causal diagram of the target domain, we can write P
˚

pvM`1:T |

v1:M q as a product of conditionals on the parents:

P
˚

pvT | v1:M q “

ÿ

vM`1:T´1

T"

i“M`1

P
˚

pvi | pa˚

i q. (62)

To transport the above, we attempt a multi-cause problem instance at every position i: for i P tM `

1, ¨ ¨ ¨ ,Ku if there exists a position i
1

P rT s and domain index j
1

P rKs such that ”pi, ˚; i1
, j

1
q “ 0,

P
˚

pVi “ y | Pa˚

i “ xq “ P
j
pVi1 “ y | Paji1 “ xq. (63)

This allows us to pool data from all position-domain pairs i1
, j

1 such that ”pi, ˚; i1
, j

1
q “ 0, and use

it to estimate P
˚

pVi “ y | Pa˚

i “ xq. In Algorithm 1 Ji denotes this subset of position-domain
pairs. Next, based on the parents in each of the source domains, we pool the data corresponding to
Ji, namely D

TR
i , with the size of |Ji| ¨ N ` n; the n term is due to the fact that ”pi, ˚; i, ˚q “ 0

is guaranteed. Next, compute the ERM using D
TR
i to obtain µ

i
TR :“ P̂ py | x;DTR

i q. Finally, we
compose all these predictors, and marginalize out the intermediate variables to achieve an estimation
of P˚

pvT | v1:M q:

µTRpvT | v1:M q “

ÿ

vM`1:T´1

T"

i“M`1

µ
i
TRpY “ vi | X “ paiq. (64)
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Next, we decompose the risk of µTR in terms of the risk of the predictors different positions:

RP˚ pµTRq “ EP˚ r´ logµTRpvT | v1:M qs pεpµ; y,xq “ ´ logµpy | xqq

(65)
“ EP˚

“
EP˚ r´ logµTRpvT | v1:M q | vM`1:T´1s

‰
plaw of iterated expectation.q

(66)

“ EP˚
“
EP˚ r´ log

ÿ

vM`1:T´1

T"

i“M`1

µ
i
TRpvi | pa˚

i q | vM`1:T´1s
‰

pintermediate variables.q

(67)

$ EP˚
“
EP˚ r

ÿ

vM`1:T´1

´ log
T"

i“M`1

µ
i
TRpvi | pa˚

i q | vM`1:T´1s
‰

pconcavity of log & Jensen ineq.q

(68)

“ EP˚
“ ÿ

vM`1:T´1

Tÿ

i“M`1

EP˚ r´ logµi
TRpvi | pa˚

i q | vM`1:T´1s
‰

plinearity of expectationq

(69)

“

Tÿ

i“M`1

EP˚
“ ÿ

vM`1:i´1

EP˚ r´ logµi
TRpvi | pa˚

i q | vM`1:is
‰

pMarkovianityq

(70)

“

Tÿ

i“M`1

EP˚ r´ logµi
TRpvi | pa˚

i qs pmarginalize interm. vars.q

(71)

“

Tÿ

i“M`1

RP˚ pµ
i
TRq prisk of sub-taskq

(72)

Let µi
˚
:“ P

˚
pvi | pa˚

i q, so that,

µ˚pvt | v1:M q “

ÿ

vM`1:T´1

T"

i“M`1

µ
i
˚

pvi | pa˚

i q. (73)

Due to Lemma B.4 and Corollary B.3, we have the following risk bound for the predictor at position
i:

RP˚ pµ
i
TRq ´ RP˚ pµ

i
˚

q $ Op
|V|

|Pa˚
i |`1

|Ji| ¨ ω2 ¨ N ` ω ¨ n
q. (74)

Therefore, we have the bound,

RP˚ pµTRq ´ RP˚ pµ˚q $

Tÿ

i“M`1

RP˚ pµ
i
TRq ´ RP˚ pµ

i
˚

q (75)

“ O
` Tÿ

i“M`1

|V|
|Pa˚

i |`1

|Ji| ¨ ω2 ¨ N ` ω ¨ n

˘
. (76)

Let,
I “ ti P rT s s.t. Ji ‰ Hu, (77)

denote the positions for which P
˚

pvi | pa˚

i q is transportable. Also, let c “ maxiPrT s |Pa˚

i |. We
have,

RP˚ pµTRq ´ RP˚ pµ˚q “ O
` |I| ¨ |V|

c`1

ω2 ¨ N
`

pT ´ M ´ |I|q ¨ |V|
c`1

ω ¨ n

˘
. (78)

The latter justifies the claim of Theorem 3.3. We discuss the different rates achievable above in
Appendix C.
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B.6 Proof of Theorem 3.4

The proof follows the logic the proof of Theorem A.5 (Appendix B.2). The structure-informed
procedure (Algorithm 3) partitions the position-domain pairs i, j into clusters. The pairs pi, ˚q each
fall into a cluster, and we use the pooled data corresponding to the position-domain pairs in that
cluster to estimate P

˚
pvi | pa˚

j q. In particular, S “ tElu in Algorithm 4 denotes these clusters,
and we iterate over all of them. Next, we consider all combination of causal diagrams for the
source and target domains; this allows the structure-informed procedure to match the scope of the
parents across the domains. For each combination above that corresponds to a selection diagram
(i.e., ”, tGj

ujPrKsYt˚u), we use Algorithm 3 as a subroutine (StrInf) to compute a an estimation of
P

˚
pvT | v1:M q.

Notably, for all possible structures encoded as ”, tGj
ujPrKsYt˚u, we have a candidate in H. Thus,

the rate achieved by the structure-informed procedure is matched by the minimum risk in H, i.e.,

RP˚ pµ̃ P argmin
µPH

RP˚ pµqq “ OpRP˚ pµTRqq. (79)

Computing µ̃ is only possible with large target data, however, we can compute an empirical risk
minimzer within H using held-out target data to achieve similar rates. Let,

µAg P argmin
µPH

1

|D
˚

te|
¨

ÿ

x,yPD˚
te

εpµ; y, xq. (80)

In computing µAg we used held-out target data D
˚

te of size n
2 , thus, we have,

RP˚ pµAgq ´ RP˚ pµ̃q “ Op

c
log |H|

n
q. (81)

We can bound the size of H as,

|H| $ pKT q
KT

looomooon
different partitions S

¨ pp2T q!qT
K`1

loooooomoooooon
causal diagrams for all domains

(82)

which gives,

log |H| $ KT ¨ plogK ` log T q ` pK ` 1qT ¨ T log T “ OpKT
3 log T q. (83)

The latter justifies the claim of Theorem 3.4:

RP˚ pµAgq “ OpRP˚ pµTRq `

c
K ¨ T 3 log T

n
q. (84)

B.7 Proof of Theorem 4.1

Define,
µεpvi | v1:i´1; jq :“ $εpvi | A

j
εi,¨ ¨ v1:T ;#εpi, jqq. (85)

We can rewrite the objective of Equation (16) as,

Lpϱq :“ ς ¨ pdε `

Kÿ

j“1

Tÿ

i,i1“1

A
j
εi,i1 q

loooooooooooomoooooooooooon
penalty

`

Kÿ

j“1

Tÿ

i“1

EP j

“
DKL

`
P

j
p¨ | V1:i´1q}µεp¨ | V1:i´1; jq

˘‰

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon
match with source distributions

. (86)

In words, the objective in Equation (16) ensures that the solution entails a distribution that matches
the sources at all conditionals and all domains, while preferring parameters with smaller mechanism
indicator range d and fewer edges in the graphs encoded by tA

j
u.

The score can be decomposed into K objectives as follows:

Lpϱq “ ς ¨ dε `

Kÿ

j“1

Ljpϱq, (87)
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where,

Ljpϱq “ ς ¨ }A
j
ε} `

Tÿ

i“1

EP j

“
DKL

`
P

j
p¨ | V1:i´1q}µεp¨ | V1:i´1; jq

˘‰
. (88)

For small enough ς " 0, maximizing Ljpϱq ensures that the parent matrix A
j has a one entry at

the position of the true parents in each row, since P
j
p¨ | v1:i´1q “ P

j
p¨ | paji q. Also, the penalty

ς ¨ }A
j
} ensures that no additional one entries are kept in the parent matrix, thus, Equation (14)

would be satisfied. Recall that d is the size of the range of the mechanism indicator mapping
# : rT s ˆ rKs Ñ rds.

If ”pi, j; i1
, j

1
q “ 0, we would have P

j
pvi | paji q “ P

j1
pvi1 | paj

1
i1 q. To satisfy Equation (13), the

mechanism indicator # : rT s ˆ rKs Ñ rds must map pi, jq and pi
1
, j

1
q to the same value in the

range rds, which makes µεpvi | paji ; jq “ µεpvi1 | paj
1

i1 ; jq. By minimizing ς ¨ d, we ensure that
this happens, satisfying Equation (13). Finally, note that once Equations (13) and (14) are satisfied,
minimizing the divergence between the true distribution P

˚
pvi | v1:i´1q and µεpvi | v1:i´1; jq occurs

only when Equation (15) is satisfied.

B.8 Proof of Theorem 4.2

The parameters to be learned in fine-tuning stage are:

1. The target mechanism indicator #˚ : rT s Ñ rdεsrcs.
2. The target parent matrix A

˚
P r0, 1s

TˆT .
3. The target-only predictors µ˚

i pvi | v1:i´1q.
4. The transport indicators s1, ..., sT P r0, 1s

Once the pretrained parameters ϱsrc satisfy Equations (13) to (15), consider the following values for
the parameters of fine-tuning stage: Let A˚ encode the true causal diagram G˚, and for the transported
conditionals P

˚
pvi | pa˚

i q we set si “ 1, and #˚
piq “ #pi

1
, j

1
q for some pi

1
, j

1
q which satisfies

”pi, ˚; i1
, j

1
q “ 0. For the non-transportable conditionals, we set si “ 0 to use µ

˚

i pvi | v1:i´1q that
is trained using the target data D

˚

tr of size proportionate to n. Let ϱ̃ encode the parameters for this
assignment of the fine-tuning parameters. We have,

RP˚ pµ
ε̃
ftpvT | v1:M q “ OpRP˚ pµTRpvT | v1:M qq, (89)

Since this set of values for the parameters corresponds to the structure-informed solution. We
discretize the fine-tuning parameter space into a set H of points , and consider only binary parent
matrices and binary transport indicators. We can ensure that ϱ̃ lies on this grid, among

|H| $ T
2loomoon

parent matrix

¨ pKT q
T

loomoon
target mech. ind.

¨ 2Tloomoon
TR indicator

(90)

We use the held-out target data to obtain the best of these candidates,

ϱ
˚

P argmin
εPH

1

|D
˚

te|
¨

ÿ

vT ,v1:MPD˚
te

´ logµε
ftpvT | v1:T q (91)

Compared to the best in class parameter set ϱ̃, we would have an excess risk bounded as,

RP˚ pµ
ε˚
ft q ´ RP˚ pµ

ε̃
ftq “ Op

c
log |H|

n
q “ Op

c
T ¨ plogK ` log T q

n
q. (92)

This proves,

RP˚ pµ
ε˚
ft q “ OpRP˚ pµTRq `

c
T ¨ plogK ` log T q

n
q (93)

“ OpRP˚ pµTRq `

c
K ¨ T 3 ¨ log T

n
q “ OpRP˚ pµAgqq (94)
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Risk

All-TR

pT´Mq¨|V |
C`1

ϱ2N

pT ´ 1q-TR

pT´M´1q¨|V |
C`1

ϱ2N `
|V |

C`1

ϱ¨n

. . .

. . .

1-TR

|V |
C`1

ϱ2N `
pT´M´1q¨|V |

C`1

ϱ¨n

None-TR

T ¨|V |
C`1

ϱ¨n

Figure 5: A schematic of risks obtained via the structure-informed procedure (Algorithm 3. In cases
where all conditionals P

˚
pvi | v1:i´1q are transportable, we obtain a rate proportionate to T´M

ω¨N .
As more and more conditionals are non-transportable, they need to be estimated from the target
data, adding a cost proportionate to 1

n for every non-transportable term. In the extreme case that no
conditional is transportable, i.e., all target mechanisms are novel, we incur a risk proportionate to T

n .

C More details on structure-informed rates

In this section, we expand upon the possible rates in sequence adaptation via the structure-informed
procedure. Please view the proof of Theorem 3.3 (Appendix B.5). We reduce the problem of
estimating P

˚
pvT | v1:M q to estimating,

P
˚

pvM`1:T | v1:M q “

T"

i“M`1

P
˚

pvi | v1:i´1q. (95)

Each of the conditionals, is either transported from a source domain (if there exists pi
1
, j

1
q such

that ”pi, ˚; i1
, j

1
q “ 0), or is estimated from the target data alone. In the former, the excess risk

associated to estimation of P˚
pvi | v1:i´1q would be |V|

c`1

ω2¨N , which is desirable since N is large,
and in the latter, the risk would be bounded by |V|

c`1

ω¨n . The joint risk depends on how many of the
T ´ M components are transported, and how many must be estimated from the target data. This
gives a variety of rates, shown in Figure 5. Notably, if N " n, then we achieve a fast rate only if all
components are transported, but achieve slower and slower rates for more and more non-transportable
components. This figure is informative in the case of structure-agnostic adaptation as well, since due

to Theorem 3.4 the risk of the structure-agnostic method is bounded by a fixed margin of
b

K¨T 3¨log T
n

compared to these rates, which is independent from the size of the vocabulary V .

D Detailed model architecture

This section provides a comprehensive walkthrough of our model architecture, focusing on how
multiple parents are identified and utilized for next-token prediction in a domain-adaptive manner.

Overall task and core design principle

The objective is sequence modeling, specifically to predict the next token in a sequence of discrete
symbols (digits 0–9 in our experiments). The core idea is that the generation of a token at position i

depends on:

1. A selected causal function (e.g., add, subtract, multiply)

2. One or more parent tokens from earlier positions in the sequence (i.e., positions ( i)

Input representation and positional encoding

Input sequences: Sequences of integer token IDs from V “ t0, 1, . . . , 9u.

Positional encoding (PositionalEncoding class): Each token at position pi, jq where i is the
sequence position and j is the domain ID is mapped to a dense vector representation using:

• Standard sinusoidal positional encodings for both the position index (0 to T ´ 1) and the
domain ID (0 to K)
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• These two embeddings (each r{2 dimensional) are concatenated to form the initial r-
dimensional embedding

• Input: pB, T q for positions and domains; Output: pB, T, dq embeddings, where B is the
batch size.

This design allows the model to be aware of both absolute position within the sequence and the
domain context, enabling domain-specific parent selection as described in the following sections.

Universal operator indicator

The UniversalOperatorIndicator class determines, for each token position, the probability
distribution over a fixed set of operations F (e.g., add, subtract, multiply_two).

Mechanism:

1. The h-dimensional embedding of each token is passed through a linear projection to |F |

dimensions
2. Layer normalization is applied: LayerNormpLinearpembeddingqq

3. Softmax produces a probability distribution: softmaxpLayerNormpLinearpembeddingqqq

Universality: This module’s parameters are shared across all domains and positions. The choice

of operation is contextual based on the token’s embedding, but the meaning of each operation is
universal across domains.

Output: pB, T, |F |q operator probabilities where B is batch size.

Domain-specific parent selector

The DomainSpecificParentSelector class implements the core mechanism for identifying
influential parent tokens, corresponding to the causal structure learning described in Algorithm 4.

Multi-head causal attention design: The mechanism uses C distinct attention heads (where C is
the maximum number of parents). For our experiments, C “ 2, meaning the model can identify up
to two distinct parents for each token.

Domain-specificity: The key innovation is that query (Que) and key (Key) projection matrices are
domain-specific:

domain_queries P RpK`1qˆCˆrˆr (96)

domain_keys P RpK`1qˆCˆrˆr (97)

During forward pass, for domain j and parent head h:

Quej,h “ Embeddings ¨ W
Que
j,h (98)

Keyj,h “ Embeddings ¨ W
Key
j,h (99)

Parent selection process: For each domain j, parent head h:

1. Attention scores: Sj,h “
Quej,hKeyT

j,h
?
r

2. Causal masking: Standard causal attention masking ensures token at position i only attends
to positions ( i

3. Sharp softmax: Aj,h “ softmaxpSj,h{⇀q where ⇀ “ 0.1

4. First position handling: Weights for position 0 are zeroed as it has no parents

The temperature ⇀ “ 0.1 makes the softmax significantly sharper, encouraging sparse selection of a
small number of parents rather than soft averaging.

Output: For each domain j, a list of C attention weight matrices pB, T, T q representing parent
selection distributions.
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Feature preparation for conditional MLP

The _prepare_mlp_features method combines operator indicators and selected parent values
to form input for the final prediction MLP.

Input components:

• sequences_onehot P t0, 1u
BˆTˆ|V|: One-hot encoded input sequences

• operator_indicators P r0, 1s
BˆTˆ|F |: From universal operator indicator

• parent_weights: From domain-specific parent selector
• domains P t0, . . . ,Ku

BˆT : Domain IDs

Feature construction: For each position i:

1. Operator indicators operator_indicatorsr:, p, :s form the first part of the feature vector
2. For each parent head h P t0, . . . , C ´ 1u:

WeightedParentValueh,p “ Aj,hr:, p, :s ¨ sequences_onehot (100)

where j is the domain of position i. This produces a pB, |V|q vector for each parent head.
3. These C vectors are concatenated after the operator indicators

Feature dimension: |F | ` pC ˆ |V|q where |F | is the number of operations and |V| “ 10.

Conditional MLP for prediction

The EfficientConditionalMLP class predicts the next token’s probability distribution based
on the combined features, implementing the learned conditional distributions P̂ pvi|paiq from our
theoretical framework.

Architecture:

1. Input projection: Linear layer from feature dimension to r

2. Hidden layers: Stack of linear layers (r Ñ r) with ReLU activations, dropout, and residual
connections

3. Output layer: Linear layer from r to |V| “ 10

Output: Logits of shape pB, T, |V|q for next-token prediction.

Training and fine-tuning protocol

Pre-training (source domains): The entire model, including domain-specific Que{Key matrices for
source domains, is trained end-to-end using standard next-token prediction cross-entropy loss.

Fine-tuning (target domain adaptation): When adapting to target domain ϑ
˚:

• Frozen components:
– Positional encoding parameters
– Universal operator indicator parameters
– Conditional MLP parameters
– Source domain Que{Key matrices

• Trainable components:

– New randomly initialized W
Que
˚,h ,W

Key
˚,h for target domain

– New target-specific operator indicator

This modular design enables learning domain-specific parent selection while reusing universal
causal functions, corresponding to the structure-agnostic adaptation strategy in Algorithm 4 with
computational efficiency discussed in Section 4.
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(a) Learned parents matrix (b) True parent matrix

Figure 6: The chain graph.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

unif ˆ2 subtract sum subtract sum subtract sum sum min

Figure 7: causal diagram and operators corresponding to the target domain.

E Experimental setup and reproducibility

The setting considered in Section 4.3 involves a source domain and a target domain with sequences
of length 10, where variables follow a chain, i.e., Pai “ Vi´1, but for the first variable V1 which has
no parents and is generated at random. Investigation of the parameters from pretraining reveal that
the parent matrix learned matches the underlying structure, as shown in Figure 6.

To handle more than one parent, we follow the design discussed in Appendix D. We experiment in
settings where each variable has at most two parents randomly selected from the previous variables
in the causal order. Note that the causal diagram of the source and target does not match necessarily,
and is decided independently. The modules that determine the value of the variables are also drawn at
random, from a pool containing null-ary, unary and binary noisy operators;

F “ tgunif , gcopy, g`1, g´1, gˆ2, gsum, gmin, gsubtract, gmultu. (101)

Such structure for T “ 10 is shown in Figures 7 and 8 for a source domain. Next, we investigate
pretraining and fine-tuning in these context of this SCMs.

E.1 Pretraining discovers causal structure

Firstly, we emphasize that in pretraining, as discussed in Section 4 and further in Appendix D, the
underlying causal structure is discoverable once we train with large source data. In particular, the
operation indicators align for position-domain pairs with matching causal mechanism across the
sources, and the parent matrices are learned too. In Figure 9 we see the parent matrices learned in

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

unif ˆ2 min sum min subtract min sum min sum

Figure 8: Causal diagram and operators corresponding to the source domain.
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Figure 9: individual parent matrices of the source, generated by key/query pairs for each position in
each domain.

(a) Learned parents (sum of parent
matrices)

(b) True parents (sum of parent ma-
trices)

Figure 10: Overlaying the parent matrices

pretraining and the true parent matrices (source only). Since some operators like summation are
symmetrical, the learned parent might mismatch in order with the true ones. Considering the overlaid
matrices shown in Figure 10, we witness that the causal diagram is learned. It is worth to mention that
in the context of transformers, [26] discovers that the transformer architecture learns such sequential
dependencies, however, it is unclear whether complex architectures like transformer can be tied to
the true causal mechanisms generating the data. Here, we show that this architecture captures not
only the causal dependencies, but also mechanism match/mismatches across the domains, allowing it
to better adapt to under-sampled domains.

E.2 Fine-tuning exhibits fast and slow adaptation

We consider our method in comparison with two baselines:

1. ERM-pool. We pool the source and target data together, dropping the domain indices, and
treat them as a single domain.

2. ERM-joint. We keep the domain indices, and train the model with source and target data
simultaneously, treating the target as another source in pretraining.

We use the same architecture of our method in both baselines to avoid discrepancies due to architecture,
and isolate/emphasize the effect of our adaptation procedure.
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(a) Adapting fast due to process supervision (b) Adapting slow due to no process supervision

Figure 11: The performance of our method which is based on structure agnostic domain adaptation,
in comparison with the baselines that train jointly on source and target data, either by discarding the
domain indices (ERM-pool) or by keeping them (ERM-joint).

The objective is learning P
˚

pv10 | v1:5q. By tracing back the operators in Figure 7, we can deduce,

V10 « minpV4 ´ V5, 2 ˆ V4 ´ V5q. (102)

This operator is binary, using only V4, V5, and is the best predictor for V10. However, it is not used
at any position in the source sequence, thus can not be transported directly even with structural
knowledge. However, the components that make it are shared between the source and target across
different positions, and we have learned them in pretraining. In fine-tuning, the task of re-learning
the composition is much simpler than re-learning the circuits themselves, as shown in Theorems 3.3
and 3.4. Figure 11a shows the performance of different methods in this task; our method achieves a
small risk faster than the baselines.

Also, we tried the same task of learning P
˚

pv10 | v1:5q but with hiding the intermediate tokens
V6, V7, V8, V9 in the target data, and forcing the models to generate auto-regressively to predict the
last token of the sequence based on the first 5 tokens. The results are shown in figure Figure 11b.
In this case, all methods struggle to converge; our method and ERM-joint perform even worse than
ERM-pool, due to higher model complexity. This observation emphasizes the importance of process

supervision in sequence learning; access to intermediate token might enable structure-informed
adaptation, which in turn allows a structure-agnostic method to also benefit from the unknown
structure.

E.3 Reproducibility

Data generation We evaluate our approach on a synthetic arithmetic benchmark where each
sequence represents a functional program executed on base-10 digits.

Model architecture The DomainAdaptationModel uses the following specification:

• Hidden dimension: r “ 128 (config.hidden_dim)
• Positional encoding: Learned embeddings of length T and dimension r

• Universal operator-indicator: 2-layer MLP: r Ñ d Ñ |F | plus LayerNorm
• Parent selector: H “ 4 causal attention heads with sharp-softmax temperature ⇀ “ 0.1

• Conditional MLP (token head): 2ˆ pLinear ` ReLUq ` LayerNorm, output size |V| “ 10

• Maximum parents per head: C “ 4 (config.max_parents)
• Parameter counts (for T “ 20): 43,868 total parameters, 20,946 trainable during fine-

tuning
• Activation dtype: float32 (no automatic mixed precision)

The target-domain adapter (our method) learns:
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• New parent queries/keys (shape rH, r, rs each)
• New operator-indicator MLP (d Ñ d Ñ |F |)
• Freezes: positional encoding, base operator MLP, parent selector of source domain(s), and

conditional MLP

Training hyperparameters Global optimizer: AdamW with ⇁1 “ 0.9, ⇁2 “ 0.999, ε “ 10´8,
weight decay 0.01, batch size 32 sequences (Ñ 32 ¨ pT ´ 1q tokens), no gradient clipping, constant
learning rate schedule.

Pre-training (source only):

• Epochs: 150
• Learning rate: 10´3

• Data: All source sequences (domain id 1)

Fine-tuning (our method - adapter only):

• Epochs: 15
• Learning rate: 10´3

• Prefix length: M “ T {2 (default, override with -M)
• Supervision modes:

– PS (process supervision): Full next-token cross-entropy
– NPS (no process supervision): Mask positions & M ´ 1

Baseline configurations:

• ERM-Pooled: Stage 1 (source only): 50 epochs, lr 10´3; Stage 2 (add target): 15 epochs, lr
5 ˆ 10´4, all parameters trainable

• ERM-Joint: Start from source pre-trained model, 20 epochs, lr 5 ˆ 10´4, all parameters
trainable

• Early stopping: None

Loss masking (NPS) In no-process-supervision (NPS) experiments, the cross-entropy at positions
& M ´ 1 is excluded:

maskris “

"
1 for 0 $ i ( M ´ 1
0 for i & M ´ 1

(103)

Implemented in build_loss_mask() and applied on GPU.

Evaluation protocol

• Input: First M tokens of target sequence where M P tT ´ 1, T {2u

• Generation: Autoregressively sample positions M, . . . , T ´ 2 by greedy argmax; keep
logits for final position

• Metric: CEplogitsT´1, target digitq averaged over 1000 held-out target sequences
• Seeds: 3 independent runs (seeds 0, 1, 2) with mean ˘ std reported in plots

Computational environment

• Hardware: NVIDIA H100 80GB (PCIe), CUDA 12.1, driver 535
• Software: PyTorch 2.1.0, Python 3.12, numpy 1.26
• Determinism: torch.use_deterministic_algorithms(True) and
torch.backends.cudnn.deterministic = True

• Typical runtimes: T “ 10, N “ 104, 3 ˆ 3 ˆ 2 grid « 6 minutes; T “ 20, N “ 105

pre-training « 90 minutes
• Peak GPU memory: ( 4GB per worker
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